首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2056篇
  免费   576篇
  国内免费   581篇
测绘学   17篇
大气科学   72篇
地球物理   270篇
地质学   2529篇
海洋学   101篇
天文学   7篇
综合类   131篇
自然地理   86篇
  2024年   5篇
  2023年   23篇
  2022年   43篇
  2021年   51篇
  2020年   64篇
  2019年   86篇
  2018年   77篇
  2017年   106篇
  2016年   127篇
  2015年   102篇
  2014年   165篇
  2013年   151篇
  2012年   133篇
  2011年   153篇
  2010年   130篇
  2009年   172篇
  2008年   170篇
  2007年   152篇
  2006年   159篇
  2005年   133篇
  2004年   114篇
  2003年   94篇
  2002年   99篇
  2001年   87篇
  2000年   77篇
  1999年   86篇
  1998年   72篇
  1997年   68篇
  1996年   63篇
  1995年   44篇
  1994年   38篇
  1993年   35篇
  1992年   26篇
  1991年   20篇
  1990年   14篇
  1989年   19篇
  1988年   13篇
  1987年   7篇
  1986年   3篇
  1985年   5篇
  1984年   9篇
  1983年   4篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1954年   3篇
排序方式: 共有3213条查询结果,搜索用时 109 毫秒
41.
Samples collected from the Upper Ordovician Red River carbonates in a well at the centre of the Williston Basin revealed two paleomagnetic components with different inclinations, 60.3 ± 3.9° (k = 70.7, N = 12) and 20.4 ± 3.3° (k = 141.2, N = 8), but similar declination values in individual specimens. Inclination-only analysis indicates two possible scenarios for the age of these two magnetizations: in scenario (a) the timing of magnetization happened sometime between Late Ordovician to Devonian; and in scenario (b) there are two different remagnetizations, one that overlaps Pennsylvanian to Permian time while the other can have either a Late Jurassic or a Tertiary age. Whereas dolomitization and some isotopic data tend to support scenario (a), previous paleomagnetic data from the Williston Basin and from younger units in the same well, the tectonic evolution of the basin, and the hydrocarbon maturation pattern in the Red River carbonates all favour chemical remagnetization(s) driven by orogenic fluids during the Alleghenian and Laramide orogenies.  相似文献   
42.
More than 1400 km of two-dimensional seismic data were used to understand the geometries and structural evolution along the western margin of the Girardot Basin in the Upper Magdalena Valley. Horizons are calibrated against 50 wells and surface geological data (450 km of traverses). At the surface, low-angle dipping Miocene strata cover the central and eastern margins. The western margin is dominated by a series of en echelon synclines that expose Cretaceous–Oligocene strata. Most synclines are NNE–NE trending, whereas bounding thrusts are mainly NS oriented. Syncline margins are associated mostly with west-verging fold belts. These thrusts started deformation as early as the Eocene but were moderately to strongly reactivated during the Andean phase. The Girardot Basin fill records at least four stratigraphic sequences limited by unconformities. Several periods of structural deformation and uplifting and subsidence have affected the area. An early Tertiary deformation event is truncated by an Eocene unconformity along the western margin of the Girardot Basin. An Early Oligocene–Early Miocene folding and faulting event underlies the Miocene unconformity along the northern and eastern margin of the Girardot Basin. Finally, the Late Miocene–Pliocene Andean deformation folds and erodes the strata along the margins of the basin against the Central and Eastern Cordilleras.  相似文献   
43.
The Villeta Group of Colombia and equivalent stratigraphic units of Venezuela and Ecuador comprise marine sequences ranging from Albian to Santonian in age. Deposition of the Villeta Group was presumed to take place entirely in quiet tectonic conditions in a passive margin setting that occupied NW South America. From a large database of 2D/3D seismic, well, surface geology, and biostratigraphic data, we present evidence for intra-Villeta (mostly late Albian–Cenomanian) deformation in parts of the Upper Magdalena Valley and Eastern Cordillera of Colombia, controlled by transpressional fault reactivation, produced by transpressional fault reactivation and thrusting that resulted in an angular unconformity. This event has been largely unnoticed in the literature, but previously scattered evidence supports our observations, suggesting regionally extensive tectonism. Published fission-track age determinations and other geologic evidence from Colombia and Venezuela suggest significant uplifts around 80–100 m.y., which may reflect changes in the subduction regime, with compressional deformation in certain regions and extensional deformation in others. A late Albian onset of compressional deformation along the Colombian and Peruvian segments of the Andes may be related to the opening of the South Atlantic Ocean at equatorial latitudes. Identification of tectonic activity with development of an unconformity in intra-Villeta times provides new insights into understanding the evolution of the Upper Magdalena Valley and adjacent areas of Colombia and western Venezuela and creates new possibilities for hydrocarbon exploration, with additional trapping phases, better reservoir preservation by early migration and secondary porosity, and ultimately facies changes with stratigraphic potential.  相似文献   
44.
Eighty two dinosaur trackways were newly discovered in Upper Cretaceous lacustrine deposits on islands in the vicinity of Yeosu, Korea. Most dinosaur tracks occur in marginal lake deposits with polygonal desiccation cracks. The dinosaur tracks at the Yeosu site include 65 ornithopod trackways, 16 theropod trackways and one sauropod trackway. The prevalence of ornithopod tracks and the limited occurrence of sauropod tracks at the Yeosu site evidently reflect decreased sauropod diversity in the Upper Cretaceous. All ornithopod trackways represent bipeds, and most of the ornithopod tracks are similar to Caririchnium from other sites of the Korean peninsula. All fossil wood specimens collected in the study area represent conifers (three species of cupressaceous and two species of taxodiaceous conifers, and a new species) except for one, which is a discotyledon. It is thus inferred that the southwestern part of the Korean Peninsula was primarily covered with mesic forests with taxodiaceous trees during the Late Cretaceous. The K–Ar age of the Yeosu tracksite is determined as 81–65 Ma (Camapnian to Maastrichtian). It indicates that the Yeosu track site contains the last records of dinosaurs living in Asia. Consequently, semi-arid palaeoclimatic conditions, together with a large lake as a persistent water source and rich vegetation of gymnosperm trees as food, resulted in the preservation of abundant dinosaur tracks in the Upper Cretaceous on the Korean Peninsula.  相似文献   
45.
The first discovery of dinosaur footprints on the Dalmatian part of the Adriatic-Dinaric carbonate platform (ADCP) is reported. They constitute the geologically youngest record of footprints on the ADCP. The trackbearing layer was formed in the intertidal environment and represents the final stage of a shallowing-upward cycle. Just below it, a heavy dinoturbated limestone layer can be observed. Microfacies analysis, incorporating evidence from benthic foraminifera and algae, indicates a Late Turonian–Early Coniacian age. The overall morphology and size of the footprints points to sauropod dinosaurs; they represent the largest forms recorded so far on the ADCP. This hints at a prolonged sauropod presence on the platform and to its Late Cretaceous connection to the continent rather than isolation.  相似文献   
46.
Several long-range seismic profiles were carried out in Russia with Peaceful Nuclear Explosions (PNE). The data from 25 PNEs recorded along these profiles were used to compile a 3-D upper mantle velocity model for the central part of the Northern Eurasia. 2-D crust and upper mantle models were also constructed for all profiles using a common methodology for wavefield interpretation. Five basic boundaries were traced over the study area: N1 boundary (velocity level, V = 8.35 km/s; depth interval, D = 60–130 km), N2 (V = 8.4 km/s; D = 100–140 km), L (V = 8.5 km/s; D = 180–240 km) and H (V = 8.6 km/s; D = 300–330 km) and structural maps were compiled for each boundary. Together these boundaries describe a 3-D upper mantle model for northern Eurasia. A map characterised the velocity distribution in the uppermost mantle down to a depth of 60 km is also presented. Mostly horizontal inhomogeneity is observed in the uppermost mantle, and the velocities range from the average 8.0–8.1 km/s to 8.3–8.4 km/s in some blocks of the Siberian Craton. At a depth of 100–200 km, the local high velocity blocks disappear and only three large anomalies are observed: lower velocities in West Siberia and higher velocities in the East-European platform and in the central part of the Siberian Craton. In contrast, the depths to the H boundary are greater beneath the craton and lower beneath in the West Siberian Platform. A correlation between tectonics, geophysical fields and crustal structure is observed. In general, the old and cold cratons have higher velocities in the mantle than the young platforms with higher heat flows.Structural peculiarities of the upper mantle are difficult to describe in form of classical lithosphere–asthenosphere system. The asthenosphere cannot be traced from the seismic data; in contrary the lithosphere is suggested to be rheologically stratified. All the lithospheric boundaries are not simple discontinuities, they are heterogeneous (thin layering) zones which generate multiphase reflections. Many of them may be a result of fluids concentrated at some critical PT conditions which produce rheologically weak zones. The most visible rheological variations are observed at depths of around 100 and 250 km.  相似文献   
47.
Observations of upper mantle reflectivity at numerous locations around the world have been linked to the presence of a heterogeneous distribution of rock types within a broad layer of the upper mantle. This phenomenon is observed in wide-angle reflection data from Lithoprobe's Alberta Basement Transect [the SAREX and Deep Probe experiments of 1995] and Trans-Hudson Orogen Transect [the THoRE experiment of 1993]. SAREX and Deep Probe image the Archaean lithosphere of the Hearne and Wyoming Provinces, whereas THoRE images the Archaean and Proterozoic lithosphere of the Trans-Hudson Orogen and neighbouring areas.Finite-difference synthetic seismograms are used to constrain the position and physical properties of the reflective layer. SAREX/Deep Probe modelling uses a 2-D visco-elastic finite-difference routine; THoRE modelling uses a pseudospectral algorithm. In both cases, the upper mantle is parameterized in terms of two media. One medium is the background matrix; the other is statistically distributed within the first as a series of elliptical bodies. Such a scheme is suitable for modelling: (1) variations in lithology (e.g., a peridotite matrix with eclogite lenses) or (2) variations in rheology (e.g., lenses of increased strain within a less strained background).The synthetic seismograms show that the properties of heterogeneities in the upper mantle do not change significantly between the two Lithoprobe transects. Beneath the Trans-Hudson Orogen in Saskatchewan, the layer is best modelled to lie at depths between 80 and 150 km. Based on observations from perpendicular profiles, anisotropy of the heterogeneities is inferred. Beneath the Precambrian domains of Alberta, 400 km to the west, upper mantle heterogeneities are modelled to occur between depths of 90 and 140 km. In both cases the heterogeneous bodies within the model have cross-sectional lengths of tens of kilometers, vertical thicknesses less than 1 km, and velocity contrasts from the background of − 0.3 to − 0.4 km/s. Based on consistency with complementary data and other results, the heterogeneous layer is inferred to be part of the continental lithosphere and may have formed through lateral flow or deformation within the upper mantle.  相似文献   
48.
The Guará and Botucatu formations comprise an 80 to 120 m thick continental succession that crops out on the western portion of the Rio Grande do Sul State (Southernmost Brazil). The Guará Formation (Upper Jurassic) displays a well-defined facies shift along its outcrop belt. On its northern portion it is characterised by coarse-grained to conglomeratic sandstones with trough and planar cross-bedding, as well as low-angle lamination, which are interpreted to represent braided river deposits. Southwards these fluvial facies thin out and interfinger with fine- to medium-grained sandstones with large-scale cross-stratification and horizontal lamination, interpreted as eolian dune and eolian sand sheets deposits, respectively. The Botucatu Formation is characterised by large-scale cross-strata formed by successive climbing of eolian dunes, without interdune and/or fluvial accumulation (dry eolian system). The contact between the Guará and the Botucatu formations is delineated by a basin-wide deflation surface (supersurface). The abrupt change in the depositional conditions that took place across this supersurface suggests a major climate change, from semi-arid (Upper Jurassic) to hyper-arid (Lower Cretaceous) conditions. A rearrangement of the Paraná Basin depocenters is contemporaneous to this climate change, which seems to have changed from a more restrict accumulation area in the Guará Formation to a wider sedimentary context in the Botucatu Formation.  相似文献   
49.
Paleontological study of Upper Jurassic and Lower Cretaceous sediments recovered by boreholes in the Agan-Vakh and Nadym-Vengapur interfluves clarified environments of their deposition. As is shown, influx of siliciclastic material to central areas of the West Siberian sea basin varied through time. Taxonomic composition and ecological structure of nektonic and benthic fossil assemblages are analyzed and considered in terms of environmental factors such as hydrodynamics, aeration, temperature, and salinity of seawater.  相似文献   
50.
New data on Sr-and C-isotopic systematics of carbonate rocks from the Upper Riphean stratotype (Karatau Group of the southern Urals) are obtained for several southwestern sections of the Bashkirian meganticlinorium, which have not been studied before. The results obtained supplement the Sr-and C-isotopic information for the group upper horizons thus detailing chemostratigraphic characterization of the entire succession. Limestone and dolostone samples used to analyze the Sr isotope composition satisfy strict geochemical criteria of the isotopic system retentivity and have been subjected to preliminary treatment in ammonium acetate to remove secondary carbonate phases. Data on 255 samples of carbonate rocks (171 studied for the first time) show that δ13C value varies in the Karatau Group succession from ?2.8 to +5.9 ‰ V-PDB with several in-phase excursions from the general trend in all the sections studied in the area 90 × 130 km. The δ13C variation trend demarcates several levels in the carbonate succession of the Karatau Group suitable for objectives of regional stratigraphy and for C-isotope chemostratigraphic subdivision of the Upper Riphean. The results of Sr isotopic analysis of 121 samples (51 unstudied before) from the Karatau Group imply that rocks in its lower part (the Katav Formation and basal horizon of the Inzer Formation) experienced considerable secondary alterations, while limestones and dolostones of the overlying interval of the group are frequently unaltered. In the “best” samples satisfying geochemical criteria of the isotopic system retentivity, the 87Sr/86Sr initial ratio increases from 0.70521–0.70532 in the lower Inzer deposits to 0.70611 in the upper Min’yar carbonates, decreasing to <0.70600 near the top of the latter. Above the regional hiatus separating the Min’yar and Uk formation, this ratio grows from 0.70533 to 0.70605–0.70609 in the limestone succession of the last formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号