首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   26篇
  国内免费   36篇
地球物理   11篇
地质学   364篇
海洋学   3篇
综合类   1篇
自然地理   8篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   11篇
  2019年   7篇
  2018年   9篇
  2017年   10篇
  2016年   11篇
  2015年   9篇
  2014年   8篇
  2013年   65篇
  2012年   23篇
  2011年   9篇
  2010年   8篇
  2009年   15篇
  2008年   12篇
  2007年   20篇
  2006年   8篇
  2005年   9篇
  2004年   20篇
  2003年   21篇
  2002年   11篇
  2001年   6篇
  2000年   11篇
  1999年   12篇
  1998年   7篇
  1997年   7篇
  1996年   10篇
  1995年   12篇
  1994年   6篇
  1993年   9篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1983年   2篇
排序方式: 共有387条查询结果,搜索用时 15 毫秒
21.
Previous studies of metapelitic rocks from the core of the southernBrittany metamorphic belt suggest a complex clockwise PTevolution. We use pseudosections calculated for an average subaluminousmetapelite composition in the MnNCKFMASH system and averagePT calculations to investigate in more detail the metamorphicevolution of these rocks. For migmatites, sequential occurrenceof kyanite, kyanite + staurolite and sillimanite suggests thata prograde evolution to P > 8 kbar at T  相似文献   
22.
23.
In pre-drift reconstructions, the central and southern parts of the Borborema Province, northeastern Brazil, belong to a large Brasiliano-Pan-African orogenic realm situated to the north of the São Francisco-Congo Craton. In order to better understand the timing and geodynamic setting under which this orogenic system developed, a structural, geochemical and geochronological study was conducted across the east Pernambuco shear zone (EPSZ) system, which separates the Pernambuco-Alagoas Domain (PEAL) from the Central Domain. A sample of the Pinhões orthogneiss (GE-1), in the Central Domain, one sample of a syenitic orthogneiss (CA-34) wrapped by the EPSZ, and one sample of orthogneiss named Altinho (CA-40), in the northern portion of the PEAL, were dated by LA-ICP-MS. The Pinhões orthogneiss yielded an age of 869 ± 9 Ma, interpreted as the emplacement age of the protolith during a late Tonian magmatic episode. Samples CA-40 and CA-34 yielded 206Pb/238U weighted mean ages of 652 ± 6 Ma and 636 ± 3 Ma, respectively, which are interpreted as dating emplacement and crystallization of the magmatic protoliths. However, it is also possible that these rocks were formed during the same magmatic event in view of the identical ages of 646 ± 13 Ma and 646 ± 11 Ma, respectively, given by the less precise upper intercept of the discordia lines. The metaluminous and magnesian nature of the Altinho orthogneiss is akin to the calc-alkalic suite. However, some samples plot in the intraplate field in tectonic discrimination diagrams and the Nd TDM model age of 1.36 Ga is unlike that of juvenile magmas in convergent settings. The Altinho orthogneiss is quite similar in terms of trace elements geochemistry to the syenitic orthogneiss, which has a clearer intraplate affinity, and the dated samples have identical initial Sr isotope ratios (0.7047). Therefore, emplacement in an extensional setting is preferred over a convergent one. Two samples of paragneisses (SB-1 and BB-9) from the PEAL were also dated. The ages of the youngest zircon grains in sample BB-9 (655–642 Ma) overlap the crystallization age of the Altinho orthogneiss, implying that sedimentation is younger than or, at best, synchronous with magmatism. The age of low Th/U grains in samples CA-34 (615 ± 8 Ma) and SB-1 (587 ± 12 Ma) are related to a subsequent metamorphic overprint, which is loosely constrained between 580 and 620 Ma. These observations, combined with evidence provided by previous studies, suggest that the change from an extensional to a contracional setting occurred at ca. 640–630 Ma. In contrast with most collisional orogens, where a long period of oceanic subduction precedes collision, the inferred tectonic evolution suggests that the Brasiliano Orogeny resulted from inversion of continental and/or proto oceanic rifts.  相似文献   
24.
Quartz-in-garnet inclusion barometry integrated with trace element thermometry and calculated phase relations is applied to mylonitized schists of the Pinkie unit cropping out on the island of Prins Karls Forland, western part of the Svalbard Archipelago. This approach combines conventional and novel techniques and allows deciphering of the pressure–temperature (P–T) evolution of mylonitic rocks, for which the P–T conditions could not have been easily deciphered using traditional methods. The results obtained suggest that rocks of the Pinkie unit were metamorphosed under amphibolite facies conditions at 8–10 kbar and 560–630°C and mylonitized at ~500 to 550°C and 9–11 kbar. The P–T results are coupled with in-situ Th–U-total Pb monazite dating, which records amphibolite facies metamorphism at c. 359–355 Ma. This is the very first evidence of late Devonian–early Carboniferous metamorphism in Svalbard and it implies that the Ellesmerian Orogeny on Svalbard was associated with metamorphism up to amphibolite facies conditions. Thus, it can be concluded that the Ellesmerian collision between the Franklinian margin of Laurentia and Pearya and Svalbard caused not only commonly accepted brittle deformation and weak greenschist facies metamorphism, but also a burial and deformation of rock complexes at much greater depths at elevated temperatures.  相似文献   
25.
Structural, petrological and textural studies are combined with phase equilibria modelling of metapelites from different structural levels of the Roc de Frausa Massif in the Eastern Pyrenees. The pre‐Variscan lithological succession is divided into the Upper, Intermediate and Lower series by two orthogneiss sheets and intruded by Variscan igneous rocks. Structural analysis reveals two phases of Variscan deformation. D1 is marked by tight to isoclinal small‐scale folds and an associated flat‐lying foliation (S1) that affects the whole crustal section. D2 structures are characterized by tight upright folds facing to the NW with steep NE–SW axial planes. D2 heterogeneously reworks the D1 fabrics, leading to an almost complete transposition into a sub‐vertical foliation (S2) in the high‐grade metamorphic domain. All structures are affected by late open to tight, steeply inclined south‐verging NW–SE folds (F3) compatible with steep greenschist facies dextral shear zones of probable Alpine age. In the micaschists of the Upper series, andalusite and sillimanite grew during the formation of the S1 foliation indicating heating from 580 to 640 °C associated with an increase in pressure. Subsequent static growth of cordierite points to post‐D1 decompression. In the Intermediate series, a sillimanite–biotite–muscovite‐bearing assemblage that is parallel to the S1 fabric is statically overgrown by cordierite and K‐feldspar. This sequence points to ~1 kbar of post‐D1 decompression at 630–650 °C. The Intermediate series is intruded by a gabbro–diorite stock that has an aureole marked by widespread migmatization. In the aureole, the migmatitic S1 foliation is defined by the assemblage biotite–sillimanite–K‐feldspar–garnet. The microstructural relationships and garnet zoning are compatible with the D1 pressure peak at ~7.5 kbar and ~750 °C. Late‐ to post‐S2 cordierite growth implies that F2 folds and the associated S2 axial planar leucosomes developed during nearly isothermal decompression to <5 kbar. The Lower series migmatites form a composite S1–S2 fabric; the garnet‐bearing assemblage suggests peak P–T conditions of >5 kbar at suprasolidus conditions. Almost complete consumption of garnet and late cordierite growth points to post‐D2 equilibration at <4 kbar and <750 °C. The early metamorphic history associated with the S1 fabric is interpreted as a result of horizontal middle crustal flow associated with progressive heating and possible burial. The upright F2 folding and S2 foliation are associated with a pressure decrease coeval with the intrusion of mafic magma at mid‐crustal levels. The D2 tectono‐metamorphic evolution may be explained by a crustal‐scale doming associated with emplacement of mafic magmas into the core of the dome.  相似文献   
26.
Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published PTt data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.  相似文献   
27.
Magmatism,metamorphism and metasomatism in the Palaeoproterozoic‐Mesoproterozoic Mt Painter Inlier and overlying Neoproterozoic Adelaidean rocks in the northern Flinders Ranges (South Australia) have previously been interpreted as resulting from the ca 500 Ma Delamerian Orogeny. New Rb–Sr, Sm–Nd and U–Pb data, as well as structural analysis,indicate that the area also experienced a second thermal event in the Late Ordovician (ca 440 Ma). The Delamerian Orogeny resulted in large‐scale folding, prograde metamorphism and minor magmatic activity in the form of a small volume of pegmatites and leucogranites. The Late Ordovician event produced larger volumes of granite (the British Empire Granite in the core of the inlier) and these show Nd isotopic evidence for a mantle component. The high‐temperature stage of this magmatic‐hydrothermal event also gave rise to unusual diopside‐titanite veins and the primary uranium mineralisation in the basement, of which the remobilisation was younger than 3.5 Ma. It is possible that parts of the Mt Gee quartz‐hematite epithermal system developed during the waning stages of the Late Ordovician event. We suggest that the Ordovician hydrothermal system was also the cause of the commonly observed retrogression of Delamerian metamorphic minerals (cordierite, andalusite) and the widespread development of actinolite, scapolite, tremolite and magnetite in the cover sequences. Deformation during the Late Ordovician was brittle. The recognition of the Late Ordovician magmatic‐hydrothermal event in the Mt Painter Province might help to link the tectonic evolution of central Australia and the southeast Australian Lachlan Fold Belt.  相似文献   
28.
In the northern Flinders Ranges, Neoproterozoic and Cambrian sedimentary rocks were deformed and variably metamorphosed during the ca 500 Ma Cambro‐Ordovician Delamerian Orogeny. Balanced and restored structural sections across the northern Flinders Ranges show shortening of about 10–20%. Despite the presence of suitable evaporitic detachment horizons at the basement‐cover interface, the structural style is best interpreted to be thick‐skinned involving basement with only a minor proportion of the overall shortening accommodated along stratigraphically controlled detachments. Much of the contractional deformation was localised by the inversion of former extensional faults such as the Norwest and Paralana Faults, which both controlled the deposition of Neoproterozoic cover successions. As such, both faults represent major, long‐lived structures which effectively define the present boundaries of the northern Flinders Ranges with the Gawler Craton to the west and the Curnamona Craton to the east. The most intense deformation, which resulted in exhumation of the basement along the Paralana Fault to form the Mt Painter and Babbage Inliers, coincides with extremely high heat flows related to extraordinarily high heat‐production rates in the basement rocks. High heat flow in the northern Flinders Ranges suggests that the structural style not only reflects the pre‐Delamerian basin architecture but is also a consequence of the reactivation of thermally perturbed, weakened basement.  相似文献   
29.
The structural study of the Saint-Laurent – La Jonquera pluton (Eastern Pyrenees), a Variscan composite laccolithic intrusion emplaced in metasedimentary and gneissic rocks of the Roc de Frausa dome, by means of the anisotropy of magnetic susceptibility (AMS) technique has allowed the determination of the nature and orientation of its magmatic fabrics. The magmatic foliation has a predominant NE–SW strike and the mean lineation is also NE–SW trending with a shallow plunge. A strain gradient is measured so that the tonalites to granodiorites that form the basal parts of the pluton, and are intruded into amphibolite-facies metamorphic rocks, recorded the highest anisotropies, whereas the monzogranites and leucogranites, emplaced into upper crustal, low-grade metamorphic rocks, are weakly deformed. These results point to the synkinematic sequential emplacement of multiple granitoid sheets, from less to more differentiated magmatic stages, during the Late Carboniferous D2 event characterized by an E–W-trending dextral transpression. The magmatic foliation appears locally disturbed by the effects of two tectonic events. The first of them (D3) produced mylonitization of granitoids along NW–SE retrograding shear zones and open folds in the host Ediacaran metasediments of the Roc de Frausa massif, likely during late Variscan times. Interference between D2 and D3 structures was responsible for the dome geometry of the whole Roc de Frausa massif. The second and last perturbation consisted of local southward tilting of the granitoids coupled to the Mesozoic–Cenozoic cover during the Alpine.  相似文献   
30.
The surface geology of central England and Belgium obscures a large ‘basement’ massif with a complex history and stronger crust and lithosphere than surrounding regions. The nucleus was forged by subduction-related magmatism at the Gondwana margin in Ediacaran time. Partitioning into a platform, in the English Midlands, and a basin stretching to Belgium, in the east, was already evident in Cambrian/earliest Ordovician time. The accretion of the Monian Composite Terrane during the Penobscotian deformation phase preceded late Tremadocian rifting, and Floian separation, of the Avalonia Terrane from the Gondwana margin. Late Ordovician magmatism in a belt from the Lake District to Belgium records subduction beneath Avalonia of part of the Tornquist Sea. This ‘Western Pacific-style’ oceanic basin closed in latest Ordovician time, uniting Avalonia and Baltica. Closure of the Iapetus Ocean in early Silurian time was soon followed by closure of the Rheic Ocean, recorded by subduction along the southern margin of the massif. The causes of late Caledonian deformation are poorly understood and controversial. Partitioned behaviour of the massif persisted into late Palaeozoic time. Late Devonian and Carboniferous sequences show strong onlap onto the massif, which was little affected by crustal extension. Compressional deformation during the Variscan Orogeny also appears slight, and was focussed in the west where a wedge-shaped mountain foreland uplift was driven by orogenic indentation, splitting the massif from the Welsh Massif along the reactivated Malvern Line. Permian to Mesozoic sequences exhibit persistent but variable degrees of onlap onto the massif.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号