首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1567篇
  免费   230篇
  国内免费   249篇
测绘学   33篇
大气科学   15篇
地球物理   589篇
地质学   867篇
海洋学   110篇
天文学   7篇
综合类   58篇
自然地理   367篇
  2024年   3篇
  2023年   11篇
  2022年   23篇
  2021年   50篇
  2020年   52篇
  2019年   60篇
  2018年   54篇
  2017年   64篇
  2016年   69篇
  2015年   52篇
  2014年   73篇
  2013年   131篇
  2012年   54篇
  2011年   91篇
  2010年   87篇
  2009年   116篇
  2008年   119篇
  2007年   107篇
  2006年   94篇
  2005年   81篇
  2004年   62篇
  2003年   56篇
  2002年   63篇
  2001年   31篇
  2000年   48篇
  1999年   40篇
  1998年   50篇
  1997年   38篇
  1996年   48篇
  1995年   31篇
  1994年   22篇
  1993年   24篇
  1992年   20篇
  1991年   13篇
  1990年   15篇
  1989年   12篇
  1988年   21篇
  1987年   10篇
  1986年   11篇
  1985年   8篇
  1984年   9篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1954年   1篇
排序方式: 共有2046条查询结果,搜索用时 62 毫秒
61.
Lord Howe Island is a small eroded remnant of a Late Miocene shield volcano. A fringing coral reef dissipates wave energy along a portion of the shoreline, but the remainder of the coast is rugged with spectacular high basaltic sea cliffs. This paper investigates the evolution of talus slopes that occur beneath the loftiest cliffs, and places this analysis within the context of a longer history of island planation that has resulted in a wide truncated shelf around the island. During the Last Glacial, when the sea level was lower than at present, talus slopes accumulated around the extent of the island's cliffed coast because material eroded from cliffs by subaerial processes could not be removed by marine processes. The survival of these slopes during the Holocene has depended on a balance achieved between rates of subaerial and marine erosion. This balance is fundamentally influenced by cliff height, as cliffs higher than 200 m are plunging or veneered by talus slopes, whereas lower cliffs have erosional shore platforms. On comparison with published erosion rates from inland basalt scarps it appears that marine processes may account for over 90 per cent of the total cliff retreat that has occurred at Lord Howe Island, yet contemporary coastal morphology attests to the significance of subaerial processes in recent times. It is likely that marine cliffing was very rapid soon after volcanism ceased, but rates of erosion decreased through time as wave energy became increasingly attenuated across a widening planation surface, and as increasing cliff heights yielded greater quantities of talus that provided protection from rapid marine erosion.  相似文献   
62.
Direct measurements of the Earth's magnetic field in Italy since 1640 a.d. have been used to check the remanence directions derived from historically dated volcanic rocks of Etna and Vesuvius. Direct measurements consist of the records of L’Aquila and Pola geomagnetic observatories, the repeat stations of the Italian Magnetic Network and the data base of the Historical Italian Geomagnetic Data Catalogue. All have been relocated to the same reference site (Viterbo — lat. 42.45°N, long. 12.03°E) in order to draw a reference secular variation (SV) curve. The direction of the Earth's field at Viterbo has also been calculated from the historical records (2000-1600) of ref. [Jackson, A., Jonkers, A.R.T., Walker, M.R., 2000. Four centuries of geomagnetic secular variation from historical records. Phil. Trans. R. Soc. London, Ser. A 358, 957-990] database. The remanence directions from Etna show a general agreement with the trend of the SV curve, although their inclination is usually lower than that from the direct measurement. The directions from Vesuvius are more scattered. Large discrepancies occur at both volcanoes and in some cases have been ascribed in the literature to poor geographic information, making it difficult to identify the flows actually emplaced during the eruptions reported in the chronicles. Closer examination shows that the great majority of the best-defined remanence directions (semi-angle of confidence α95 < 2.5°) deviate significantly from the geomagnetic direction measured at the time of the emplacement, the angle between the two directions being larger than the α95 value. The value of 2.5-3.0° can thus be regarded as a conservative evaluation of the error when dealing with dating Etna and Vesuvius lava flows older than 17th century, even when the accuracy attained in remanence measurements is higher. In default of a SV curve for Italy derived from archaeological artefacts, a further error in dating is introduced when reference is made to SV curves of other countries, even if well-established, as these are from regions too far from Italy (>600 km) to confidently relocate magnetic directions.  相似文献   
63.
Differential GPS (DGPS) and Differential Interferometric Synthetic Aperture Radar (DInSAR) analyses were applied to the Kos-Yali-Nisyros Volcanic Field (SE Hellenic Volcanic Arc) to quantify the ground deformation of Nisyros Volcano. After intense seismic activity in 1996, a GPS network was installed in June 1997 and re-occupied annually up to 2002. A general uplift ranging from 14 to 140 mm was determined at all stations of the network. The corresponding horizontal displacements ranged from 13 to 53 mm. The displacement vectors indicate that the island is undergoing extension towards the East, West and South. A two-source “Mogi” model combined with assumed motion along the Mandraki Fault was constructed to fit the observed deformation. The best-fit model assumes sources at a depth of 5500 m NW of the centre of the island and at 6500 m offshore ESE of Yali Island. DInSAR analysis using four pairs of images taken between May 1995 and September 2000 suggests that deformation was occurring during 1995 before the start of the seismic crisis. An amplitude of at least 56 mm along the slant range appeared for the period 1996 through 1999. This deformation is consistent with the two-source model invoked in DGPS modelling. Surface evidence of ground deformation is expressed in the contemporaneous reactivation of the Mandraki Fault. In addition, a 600 m long N-S trending irregular rupture in the caldera floor was formed between 2001 and 2002. This rupture is interpreted as the release of surface stress in the consolidated epiclastic and hydrothermal sediments of the caldera floor.  相似文献   
64.
INTRODUCTION TheLonghai ZhangpucoastalareaofFujianProvinceliesonthesouthernsideoftheoutletofthe JiulongjiangRiver.Tectonically,itislocatedonthesouthernsegmentoftheChangle Zhao’anfault zone.Previously,alotofseismogeologicresearchworkhasbeencarriedoutinthi…  相似文献   
65.
云南东北部拱王山末次冰期   总被引:1,自引:0,他引:1  
1 Introduction The Gongwang mountains constitute one of the few high m ountains of irrefutable late Pleistocene glaciation in eastern China. This area is one of the m ost extensively studied Quaternary geologicallocationsin eastern China and the interpret…  相似文献   
66.
The Guil River Valley (Queyras, Southern French Alps) is prone to catastrophic floods, as the long historical archives and Holocene sedimentary records demonstrate. In June 2000, the upper part of this valley was affected by a “30-year” recurrence interval (R.I.) flood. Although of lower magnitude and somewhat different nature from that of 1957 (>100-year R.I. flood), the 2000 event induced serious damage to infrastructure and buildings on the valley floor. Use of methods including high-resolution aerial photography, multi-date mapping, hydraulic calculations and field observations made possible the characterisation of the geomorphic impacts on the Guil River and its tributaries. The total rainfall (260 mm in four days) and maximum hourly intensity (17.3 mm h−1), aggravated by pre-existing saturated soils, explain the immediate response of the fluvial system and the subsequent destabilisation of slopes. Abundant water and sediment supply (landsliding, bank erosion), particularly from small catchment basins cut into slaty, schist bedrock, resulted in destructive pulses of debris flow and hyperconcentrated flows. The specific stream power of the Guil and its tributaries was greater than the critical stream power, thus explaining the abundant sediment transport. The Guil discharge was estimated as 180 m3 s−1 at Aiguilles, compared to the annual mean discharge of 6 m3 s−1 and a June mean discharge of 18 m3 s−1. The impacts on the Guil valley floor (flooding, aggradation, generalised bank erosion and changes in the river pattern) were widespread and locally influenced by variations in the floodplain slope and/or channel geometry. The stream partially reoccupied former channels abandoned or modified in their geometry by various structures built during the last four decades, as exemplified by the Aiguilles case study, where the worst damage took place. A comparative study of the geomorphic consequences of both the 1957 and 2000 floods shows that, despite their poor maintenance, the flood control structures built after the 1957 event were relatively efficient, in contrast to unprotected places. The comparison also demonstrates the role of land-use changes (conversion from traditional agro-pastoral life to a ski/hiking-based economy, construction of various structures) in reducing the Guil channel capacity and, more generally, in increasing the vulnerability of the human installations. The efficiency of the measures taken after the 2000 flood (narrowing and digging out of the channel) is also assessed. Final evaluation suggests that, in such high mountainous environments, there is a need to keep most of the 1957 flooded zone clear of buildings and other structures (aside from the existing villages and structures of particular economic interest), in order to enable the river to migrate freely and to adjust to exceptional hydro-geomorphic conditions without causing major damage.  相似文献   
67.
The Quaternary Acatlán Volcanic Field (AVF) is located at the western edge of the Trans-Mexican Volcanic Belt (TMVB). This region is related to the subduction of the Pacific Cocos and Rivera plates beneath the North American plate since the late Miocene. AVF rocks are products of Pleistocene volcanic activity and include lava flows, domes, erupted basaltic andesite, trachyandesite, trachydacite, and rhyolite of calc–alkaline affinity. Most rocks show depletion in high field-strength elements and enrichment in large ion lithophile elements and light rare earth elements as is typical for magmas in subduction-related volcanic arcs. 87Sr/86Sr values range from 0.70361 to 0.70412, while Nd values vary from +2.3 to +5.2. Sr–Nd isotopic data plot along the mantle array. On the other hand, lead isotope compositions (206Pb/204Pb=18.62–18.75, 207Pb/204Pb=15.57–15.64, and 208Pb/204Pb=38.37–38.67) give evidence for combined influences of the upper mantle, fluxes derived from subducted sediments, and the upper continental crust involved in magma genesis at AVF. Additionally δ18O whole rock analyses range from +6.35‰ in black pumice to +10.9‰ in white pumice of the Acatlán Ignimbrite. A fairly good correlation is displayed between Sr as well as O isotopes and SiO2 emphasizing the effects of crustal contamination. Compositional and isotopic data suggest that the different AVF series derived from distinct parental magmas, which were generated by partial melting of a heterogeneous mantle source.  相似文献   
68.
VMS deposits of the South Urals developed within the evolving Urals palaeo-ocean between Silurian and Late Devonian times. Arc-continent collision between Baltica and the Magnitogorsk Zone (arc) in the south-western Urals effectively terminated submarine volcanism in the Magnitogorsk Zone with which the bulk of the VMS deposits are associated. The majority of the Urals VMS deposits formed within volcanic-dominated sequences in deep seawater settings. Preservation of macro and micro vent fauna in the sulphide bodies is both testament to the seafloor setting for much of the sulphides but also the exceptional degree of preservation and lack of metamorphic overprint of the deposits and host rocks. The deposits in the Urals have previously been classified in terms of tectonic setting, host rock associations and metal ratios in line with recent tectono-stratigraphic classifications. In addition to these broad classes, it is clear that in a number of the Urals settings, an evolution of the host volcanic stratigraphy is accompanied by an associated change in the metal ratios of the VMS deposits, a situation previously discussed, for example, in the Noranda district of Canada.Two key structural settings are implicated in the South Urals. The first is seen in a preserved marginal allochthon west of the Main Urals Fault where early arc tholeiites host Cu–Zn mineralization in deposits including Yaman Kasy, which is host to the oldest macro vent fauna assembly known to science. The second tectonic setting for the South Urals VMS is the Magnitogorsk arc where study has highlighted the presence of a preserved early forearc assemblage, arc tholeiite to calc-alkaline sequences and rifted arc bimodal tholeiite sequences. The boninitc rocks of the forearc host Cu–(Zn) and Cu–Co VMS deposits, the latter hosted in fragments within the Main Urals Fault Zone (MUFZ) which marks the line of arc-continent collision in Late Devonian times. The arc tholeiites host Cu–Zn deposits with an evolution to more calc-alkaline felsic volcanic sequences matched with a change to Zn–Pb–Cu polymetallic deposits, often gold-rich. Large rifts in the arc sequence are filled by thick bimodal tholeiite sequences, themselves often showing an evolution to a more calc-alkaline nature. These thick bimodal sequences are host to the largest of the Cu–Zn VMS deposits.The exceptional degree of preservation in the Urals has permitted the identification of early seafloor clastic and hydrolytic modification (here termed halmyrolysis sensu lato) to the sulphide assemblages prior to diagenesis and this results in large-scale modification to the primary VMS body, resulting in distinctive morphological and mineralogical sub-types of sulphide body superimposed upon the tectonic association classification.It is proposed that a better classification of seafloor VMS systems is thus achievable using a three stage classification based on (a) tectonic (hence bulk volcanic chemistry) association, (b) local volcanic chemical evolution within a single edifice and (c) seafloor reworking and halmyrolysis.  相似文献   
69.
The Holocene Period for the province of West New Britain, Papua New Guinea, is characterised by periodic catastrophic volcanism. The region is mantled in dense wet tropical rainforest, and has been occupied by people since the Pleistocene. Analyses of peat from two nearby sites within a lowland rainforest environment provide us with a macro-level landscape account of the periodic destruction and recovery of the coastal forests during seven periods of volcanic activity in the latter part (2900 yr ago to present) of the Holocene. Radiocarbon dating shows the very close correlation of the peat and tephra layers at both sites, yet the pollen analysis reveals different vegetation communities. These initial results allow us to begin identifying the processes of recovery, and to recognise different ecological pressures placed on vegetation at these neighbouring sites. Evidence of hydrological changes are observed beginning with a marine incursion recorded at Garu Site 3 1360 14C yr B.P. The distinct differences in the vegetation re-establishment and community regeneration rates suggest the greater level of disturbance at Garu Site 1 could be related to the depth of the ashfall, although the proximity of a known human settlement may also be a contributing factor. Of note, palynologically, we found that the fern spore flora is particularly rich and believe it will be useful for ecological interpretation.  相似文献   
70.
Characterising youthful strike-slip fault systems within transtensional regimes is often complicated by the presence of tectonic geomorphic features produced by normal faulting associated with oblique extension. The Petersen Mountain fault in the northern Walker Lane tectonic province exhibits evidence of both normal and strike-slip faulting. We present the results of geologic and geomorphic mapping, and palaeoseismic trenching that characterise the fault's style and sense of deformation. The fault consists of two major traces. The western trace displaces colluvial, landslide, and middle to late Pleistocene alluvial fans and is associated with aligned range front saddles, linear drainages, and oversteepened range front slopes. The eastern trace is associated with a low linear bedrock ridge, a narrow graben, right deflected stream channels, and scarps in late Pleistocene alluvial fan deposits. A trench on the eastern trace of the fault exposed a clear juxtaposition of disintegrated granodiorite bedrock against sand and boulder alluvial fan deposits across a steeply east-dipping fault. The stratigraphic evidence supports the occurrence of at least one late Pleistocene earthquake with a component of lateral displacement. As such, the Petersen Mountain fault accommodates part of the ~7 mm/yr of dextral shear distributed across the northern Walker Lane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号