首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   719篇
  免费   92篇
  国内免费   189篇
测绘学   27篇
大气科学   17篇
地球物理   282篇
地质学   567篇
海洋学   28篇
天文学   5篇
综合类   40篇
自然地理   34篇
  2024年   2篇
  2023年   7篇
  2022年   15篇
  2021年   15篇
  2020年   19篇
  2019年   14篇
  2018年   16篇
  2017年   23篇
  2016年   30篇
  2015年   15篇
  2014年   33篇
  2013年   38篇
  2012年   23篇
  2011年   49篇
  2010年   63篇
  2009年   52篇
  2008年   70篇
  2007年   62篇
  2006年   39篇
  2005年   47篇
  2004年   34篇
  2003年   33篇
  2002年   30篇
  2001年   15篇
  2000年   31篇
  1999年   29篇
  1998年   34篇
  1997年   20篇
  1996年   32篇
  1995年   15篇
  1994年   14篇
  1993年   14篇
  1992年   15篇
  1991年   5篇
  1990年   10篇
  1989年   7篇
  1988年   14篇
  1987年   6篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   2篇
  1954年   1篇
排序方式: 共有1000条查询结果,搜索用时 28 毫秒
31.
Direct measurements of the Earth's magnetic field in Italy since 1640 a.d. have been used to check the remanence directions derived from historically dated volcanic rocks of Etna and Vesuvius. Direct measurements consist of the records of L’Aquila and Pola geomagnetic observatories, the repeat stations of the Italian Magnetic Network and the data base of the Historical Italian Geomagnetic Data Catalogue. All have been relocated to the same reference site (Viterbo — lat. 42.45°N, long. 12.03°E) in order to draw a reference secular variation (SV) curve. The direction of the Earth's field at Viterbo has also been calculated from the historical records (2000-1600) of ref. [Jackson, A., Jonkers, A.R.T., Walker, M.R., 2000. Four centuries of geomagnetic secular variation from historical records. Phil. Trans. R. Soc. London, Ser. A 358, 957-990] database. The remanence directions from Etna show a general agreement with the trend of the SV curve, although their inclination is usually lower than that from the direct measurement. The directions from Vesuvius are more scattered. Large discrepancies occur at both volcanoes and in some cases have been ascribed in the literature to poor geographic information, making it difficult to identify the flows actually emplaced during the eruptions reported in the chronicles. Closer examination shows that the great majority of the best-defined remanence directions (semi-angle of confidence α95 < 2.5°) deviate significantly from the geomagnetic direction measured at the time of the emplacement, the angle between the two directions being larger than the α95 value. The value of 2.5-3.0° can thus be regarded as a conservative evaluation of the error when dealing with dating Etna and Vesuvius lava flows older than 17th century, even when the accuracy attained in remanence measurements is higher. In default of a SV curve for Italy derived from archaeological artefacts, a further error in dating is introduced when reference is made to SV curves of other countries, even if well-established, as these are from regions too far from Italy (>600 km) to confidently relocate magnetic directions.  相似文献   
32.
Differential GPS (DGPS) and Differential Interferometric Synthetic Aperture Radar (DInSAR) analyses were applied to the Kos-Yali-Nisyros Volcanic Field (SE Hellenic Volcanic Arc) to quantify the ground deformation of Nisyros Volcano. After intense seismic activity in 1996, a GPS network was installed in June 1997 and re-occupied annually up to 2002. A general uplift ranging from 14 to 140 mm was determined at all stations of the network. The corresponding horizontal displacements ranged from 13 to 53 mm. The displacement vectors indicate that the island is undergoing extension towards the East, West and South. A two-source “Mogi” model combined with assumed motion along the Mandraki Fault was constructed to fit the observed deformation. The best-fit model assumes sources at a depth of 5500 m NW of the centre of the island and at 6500 m offshore ESE of Yali Island. DInSAR analysis using four pairs of images taken between May 1995 and September 2000 suggests that deformation was occurring during 1995 before the start of the seismic crisis. An amplitude of at least 56 mm along the slant range appeared for the period 1996 through 1999. This deformation is consistent with the two-source model invoked in DGPS modelling. Surface evidence of ground deformation is expressed in the contemporaneous reactivation of the Mandraki Fault. In addition, a 600 m long N-S trending irregular rupture in the caldera floor was formed between 2001 and 2002. This rupture is interpreted as the release of surface stress in the consolidated epiclastic and hydrothermal sediments of the caldera floor.  相似文献   
33.
INTRODUCTION TheLonghai ZhangpucoastalareaofFujianProvinceliesonthesouthernsideoftheoutletofthe JiulongjiangRiver.Tectonically,itislocatedonthesouthernsegmentoftheChangle Zhao’anfault zone.Previously,alotofseismogeologicresearchworkhasbeencarriedoutinthi…  相似文献   
34.
The Quaternary Acatlán Volcanic Field (AVF) is located at the western edge of the Trans-Mexican Volcanic Belt (TMVB). This region is related to the subduction of the Pacific Cocos and Rivera plates beneath the North American plate since the late Miocene. AVF rocks are products of Pleistocene volcanic activity and include lava flows, domes, erupted basaltic andesite, trachyandesite, trachydacite, and rhyolite of calc–alkaline affinity. Most rocks show depletion in high field-strength elements and enrichment in large ion lithophile elements and light rare earth elements as is typical for magmas in subduction-related volcanic arcs. 87Sr/86Sr values range from 0.70361 to 0.70412, while Nd values vary from +2.3 to +5.2. Sr–Nd isotopic data plot along the mantle array. On the other hand, lead isotope compositions (206Pb/204Pb=18.62–18.75, 207Pb/204Pb=15.57–15.64, and 208Pb/204Pb=38.37–38.67) give evidence for combined influences of the upper mantle, fluxes derived from subducted sediments, and the upper continental crust involved in magma genesis at AVF. Additionally δ18O whole rock analyses range from +6.35‰ in black pumice to +10.9‰ in white pumice of the Acatlán Ignimbrite. A fairly good correlation is displayed between Sr as well as O isotopes and SiO2 emphasizing the effects of crustal contamination. Compositional and isotopic data suggest that the different AVF series derived from distinct parental magmas, which were generated by partial melting of a heterogeneous mantle source.  相似文献   
35.
VMS deposits of the South Urals developed within the evolving Urals palaeo-ocean between Silurian and Late Devonian times. Arc-continent collision between Baltica and the Magnitogorsk Zone (arc) in the south-western Urals effectively terminated submarine volcanism in the Magnitogorsk Zone with which the bulk of the VMS deposits are associated. The majority of the Urals VMS deposits formed within volcanic-dominated sequences in deep seawater settings. Preservation of macro and micro vent fauna in the sulphide bodies is both testament to the seafloor setting for much of the sulphides but also the exceptional degree of preservation and lack of metamorphic overprint of the deposits and host rocks. The deposits in the Urals have previously been classified in terms of tectonic setting, host rock associations and metal ratios in line with recent tectono-stratigraphic classifications. In addition to these broad classes, it is clear that in a number of the Urals settings, an evolution of the host volcanic stratigraphy is accompanied by an associated change in the metal ratios of the VMS deposits, a situation previously discussed, for example, in the Noranda district of Canada.Two key structural settings are implicated in the South Urals. The first is seen in a preserved marginal allochthon west of the Main Urals Fault where early arc tholeiites host Cu–Zn mineralization in deposits including Yaman Kasy, which is host to the oldest macro vent fauna assembly known to science. The second tectonic setting for the South Urals VMS is the Magnitogorsk arc where study has highlighted the presence of a preserved early forearc assemblage, arc tholeiite to calc-alkaline sequences and rifted arc bimodal tholeiite sequences. The boninitc rocks of the forearc host Cu–(Zn) and Cu–Co VMS deposits, the latter hosted in fragments within the Main Urals Fault Zone (MUFZ) which marks the line of arc-continent collision in Late Devonian times. The arc tholeiites host Cu–Zn deposits with an evolution to more calc-alkaline felsic volcanic sequences matched with a change to Zn–Pb–Cu polymetallic deposits, often gold-rich. Large rifts in the arc sequence are filled by thick bimodal tholeiite sequences, themselves often showing an evolution to a more calc-alkaline nature. These thick bimodal sequences are host to the largest of the Cu–Zn VMS deposits.The exceptional degree of preservation in the Urals has permitted the identification of early seafloor clastic and hydrolytic modification (here termed halmyrolysis sensu lato) to the sulphide assemblages prior to diagenesis and this results in large-scale modification to the primary VMS body, resulting in distinctive morphological and mineralogical sub-types of sulphide body superimposed upon the tectonic association classification.It is proposed that a better classification of seafloor VMS systems is thus achievable using a three stage classification based on (a) tectonic (hence bulk volcanic chemistry) association, (b) local volcanic chemical evolution within a single edifice and (c) seafloor reworking and halmyrolysis.  相似文献   
36.
The Holocene Period for the province of West New Britain, Papua New Guinea, is characterised by periodic catastrophic volcanism. The region is mantled in dense wet tropical rainforest, and has been occupied by people since the Pleistocene. Analyses of peat from two nearby sites within a lowland rainforest environment provide us with a macro-level landscape account of the periodic destruction and recovery of the coastal forests during seven periods of volcanic activity in the latter part (2900 yr ago to present) of the Holocene. Radiocarbon dating shows the very close correlation of the peat and tephra layers at both sites, yet the pollen analysis reveals different vegetation communities. These initial results allow us to begin identifying the processes of recovery, and to recognise different ecological pressures placed on vegetation at these neighbouring sites. Evidence of hydrological changes are observed beginning with a marine incursion recorded at Garu Site 3 1360 14C yr B.P. The distinct differences in the vegetation re-establishment and community regeneration rates suggest the greater level of disturbance at Garu Site 1 could be related to the depth of the ashfall, although the proximity of a known human settlement may also be a contributing factor. Of note, palynologically, we found that the fern spore flora is particularly rich and believe it will be useful for ecological interpretation.  相似文献   
37.
三塘湖盆地石炭系卡拉岗组火山岩岩相研究   总被引:2,自引:0,他引:2       下载免费PDF全文
三塘湖盆地石炭系卡拉岗组火山岩岩性揭示该区火山岩岩相主要包括火山爆发相、溢流相,火山沉积相不发育。为了明确不同岩相分布规律,本文系统利用测井、地质、地震等多种资料,建立测井岩性识别模板,以单井相作为约束,开展地震反演,明确火山岩岩相的平面分布规律。研究结果表明:该区火山喷发方式以裂隙式为主,火山口呈串珠状沿主断裂排列;溢流相平面呈层状分布,溢流相安山岩最为发育。研究结果可有效指导该区火山岩油藏的勘探评价工作,同时为火山岩岩相研究提供可借鉴的研究思路。  相似文献   
38.
Woodlark Island (Muyuw) is located in a tectonically complex region, one of the few places on Earth where continental breakup is occurring ahead of seafloor spreading. Rifting commenced in the late Miocene (8.8–6 Ma) and is associated with the westward-propagating Woodlark Basin Spreading Centre. The island comprises approximately 850 km2 of raised Pleistocene coral reef and associated sediments with a central, moderately elevated range underlain by the middle Miocene calc-alkaline to shoshonitic Okiduse Volcanic Group (new name). It provides an exposure of upper Cenozoic geology in close proximity to the spreading centre. The Okiduse Volcanic Group is host to most of the island's historical gold and silver production and recently defined mineral resources totalling 1.75 Moz gold. This study uses facies analysis of pyroclastic deposits to develop a detailed geological map of the Okiduse Volcanic Group, with a revision and reinterpretation of the unit. Facies associations suggest that two major volcanic centres erupted synchronously during the middle Miocene (14–12 Ma), referred to as the Watou Mountain Eruptive Centre (new name) and the Uvarakoi Caldera (new name). The mafic–intermediate Watou Mountain Eruptive Centre formed during frequent small eruptions of widely varying style. Strombolian, subplinian, vulcanian and dome-related explosive eruptions occurred, alternating with extrusion of block and ash flow deposits and lava domes. Pyroclastic deposits were rapidly reworked from the steep cone, and were redeposited in a series of coalescing aprons surrounding the volcano. The felsic Uvarakoi Caldera formed during a series of violent explosive eruptions by rapid removal of magma from the underlying chamber, followed by collapse. Plinian and possibly phreatoplinian eruptions, as a result of magma–water mixing in the surface environment, resulted in widely dispersed, highly fragmented tuff deposits. The caldera was modified by widespread erosion following eruptions, resulting in fluvial, laharic and slope-wash deposits. This study highlights lithological controls (porosity and permeability) by various units within the Okiduse Volcanic Group on ore deposition.  相似文献   
39.
朱世恒  何晓庆  朱平 《气象科技》2016,44(6):902-906
近年来我国大部分地区在冬、春两季多遭受冻雨灾害,自动气象站的风向风速传感器容易因冻结而无法正常工作。针对冻结故障的实时检测问题,本文设计了一种基于ZQZ-TF型风传感器的故障自动检测装置。该装置通过检测风传感器的工作电压和工作电流,实现对传感器实时状态的监控。同时,结合具体的故障诊断算法,能够快速判断风传感器是否被冻结。系统的核心硬件电路、软件算法可分别集成在自动气象站风向风速数据采集电路和嵌入式软件中,具有结构紧凑、操作简单的特点。经验证,该装置能够实时检测风传感器冻结故障,且工作稳定,检测精度高。  相似文献   
40.
The monitoring of sulfur species in crater lakes has proven to be useful for forecasting episodes of volcanic unrest in certain active volcanoes, including Poás, Costa Rica; Kusatsu-Shirane, Japan; and Mt. Ruapehu, New Zealand. In this study, we have improved the current geochemical monitoring of El Chichón volcano through the setting of optimal high-performance liquid chromatography conditions (HPLC) for the analysis of S2−, SO32−, S2O32−, S4O62− and SO42− using a common chromatographic system. The procedure was applied to the analysis of lake samples taken in March, July and October of 2014 and April of 2015. The results were promising, since nearly all species were detected (with the exception of S2O32−) in measurable amounts, including S2− (<0.85–5.05 mg/L), SO32− (<2.77–26.1 mg/L), S4O62− (108.27–303.82 mg/L) and SO42− (489.58–676.26 mg/L). The spatial distribution of these species along the lakeshore showed zones of increased concentrations to the east and southeast of the lake, which provides information on the distribution of faults or cracks that feed hydrothermal fluids to the lake. This method thus provides additional information linked to the volcanic and hydrothermal activity of the volcano.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号