首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   200篇
  国内免费   54篇
测绘学   31篇
大气科学   11篇
地球物理   535篇
地质学   218篇
海洋学   18篇
天文学   1篇
综合类   33篇
自然地理   157篇
  2024年   2篇
  2023年   7篇
  2022年   14篇
  2021年   68篇
  2020年   51篇
  2019年   41篇
  2018年   39篇
  2017年   49篇
  2016年   50篇
  2015年   58篇
  2014年   52篇
  2013年   78篇
  2012年   36篇
  2011年   42篇
  2010年   35篇
  2009年   26篇
  2008年   55篇
  2007年   42篇
  2006年   38篇
  2005年   33篇
  2004年   31篇
  2003年   21篇
  2002年   14篇
  2001年   16篇
  2000年   15篇
  1999年   9篇
  1998年   14篇
  1997年   7篇
  1996年   11篇
  1995年   8篇
  1994年   7篇
  1993年   6篇
  1992年   5篇
  1991年   9篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有1004条查询结果,搜索用时 31 毫秒
41.
Shrink–swell soils, such as those in a Mediterranean climate regime, can cause changes in terms of hydrological and erosive responses because of the changing soil water storage conditions. Only a limited number of long‐term studies have focused on the impacts on both hydrological and erosive responses and their interactions in an agricultural environment. In this context, this study aims to document the dynamics of cracks, runoff and soil erosion within a small Mediterranean cultivated catchment and to quantify the influence of crack processes on the water and sediment supplied to a reservoir located at the catchment outlet using water and sediment measurements at a cultivated field outlet as baseline. Detailed monitoring of the presence of topsoil cracks was conducted within the Kamech catchment (ORE OMERE, Tunisia), and runoff and suspended sediment loads were continuously measured over a long period of time (2005–2012) at the outlets of a field (1.32 ha) and a catchment (263 ha). Analysis of the data showed that topsoil cracks were open approximately half of the year and that the rainfall regime and water table level conditions locally control the seasonal cracking dynamics. Topsoil cracks appeared to seriously affect the generation of runoff and sediment concentrations and, consequently, sediment yields, with similar dynamics observed at the field and catchment outlets. A similar time lag in the seasonality between water and sediment delivery was observed at these two scales: although the runoff rates were globally low during the presence of topsoil cracks, most sediment transport occurred during this period associated with very high sediment concentrations. This study underlines the importance of a good prediction of runoff during the presence of cracks for reservoir siltation considerations. In this context, the prediction of cracking effects on runoff and soil erosion is a key factor for the development of effective soil and water management strategies and downstream reservoir preservation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
42.
Assessing catchment runoff response remains a key research frontier because of limitations in current observational techniques to fully characterize water source areas and transit times in diverse geographical environments. Here, we report a study that combines empirical data with modelling to identify dominant runoff processes in a sparsely monitored humid tropical catchment. The analysis integrated isotope tracers into conceptual rainfall–runoff models of varying complexity (from 5 to 11 calibrated parameters) that are able to simulate discharge and tracer concentrations and track the evolving age of stream water exiting the catchment. The model structures can be seen as competing hypotheses of catchment functioning and were simultaneously calibrated against uncertain streamflow gaugings and a 2‐year daily isotope rainfall–runoff record. Comparison of the models was facilitated using global parameter sensitivity analysis and the resulting effect on calibration. We show that a variety of tested model structures reproduced water and tracer dynamics in stream, but the simpler models failed to adequately reproduce both. The resulting water age distributions of the tested models varied significantly with little similarity between the stream water age and stored water age distributions. The sensitivity analysis revealed that only some of the more complex models (from eight parameters) could be better constrained to infer more plausible water age distributions and catchment storage estimates. These models indicated that the age of water stored in the catchment is generally older compared with the age of water fluxes, with evapotranspiration age being younger compared with streamflow. However, the water age distributions followed a similar temporal behaviour dominated by climatic seasonality. Stream water ages increased during the dry season (greater than 1 year) and decreased with increased streamflow (a few weeks old) during the wet season. We further show that the ratios of the streamwater age to stored water age distribution and the water age distribution of actual evapotranspiration to the stored water age distribution from constrained models could potentially serve as useful hydrological indicators of catchment functioning. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
43.
In 1967, the original Walker Branch Watershed (WBW) project was established to study elemental cycling and mass balances in a relatively unimpacted watershed. Over the next 50+ years, findings from additional experimental studies and long-term observations on WBW advanced understanding of catchment hydrology, biogeochemistry, and ecology and established WBW as a seminal site for catchment science. The 97.5-ha WBW is located in East Tennessee, USA, on the U.S. Department of Energy's Oak Ridge Reservation. Vegetation on the watershed is characteristic of an eastern deciduous, second-growth forest. The watershed is divided into two subcatchments: the West Fork (38.4 ha) and the East Fork (59.1 ha). Headwater streams draining these subcatchments are fed by multiple springs, and thus flow is perennial. Stream water is high in base cations due to weathering of dolomite bedrock and nutrient concentrations are low. Long-term observations of climate, hydrology, and biogeochemistry include daily (1969–2014) and 15-min (1994–2014) stream discharge and annual runoff (1969–2014); hourly, daily, and annual rainfall (1969–2012); daily climate and soil temperature (1993–2010); and weekly stream water chemistry (1989–2013). These long-term datasets are publicly available on the WBW website (https://walkerbranch.ornl.gov/long-term-data/ ). While collection of these data has ceased, related long-term measurements continue through the National Ecological Observatory Network (NEON), where WBW is the core terrestrial and aquatic site in the Appalachian and Cumberland Plateau region (NEON's Domain 7) of the United States. These long-term datasets have been and will continue to be important in evaluating the influence of climatic and environmental drivers on catchment processes.  相似文献   
44.
Metal loads were determined from water samples collected under different streamflow conditions (baseflow and storm events) in a rural catchment (NW Spain) during 4 years. A study at annual, seasonal and storm‐event scales was carried out. In all analysed scales, the export order was Fe > Al > Mn > Zn > Cu. A high inter‐annual, seasonal and storm‐event scale variability of metal load was observed. The total metal loads in stream were higher during baseflow conditions than during storm events, which only represented 4% of the duration of the study period and 25% of streamflow. During storm events, both Al and Fe loads accounted 45% of the total load of the study period, whereas Mn, Cu and Zn loads represented 42%, 33% and 24%, respectively. This highlights the role of high flows on metal export. Only four big events exported around 30% of load of each metal transported in events. At all time scales, a prevalence of export of particulate metals over dissolved metals was observed, more pronounced for Al, Fe and Mn than for Cu and Zn. The export of metals in the Corbeira catchment is influenced by runoff and, to a lesser extent, by the rainfall amount. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
45.
Amount and composition of dissolved organic matter (DOM) were evaluated for multiple, nested stream locations in a forested watershed to investigate the role of hydrologic flow paths, wetlands and drainage scale. Sampling was performed over a 4‐year period (2008–2011) for five locations with drainage areas of 0.62, 3.5, 4.5, 12 and 79 ha. Hydrologic flow paths were characterized using an end‐member mixing model. DOM composition was determined using a suite of spectrofluorometric indices and a site‐specific parallel factor analysis model. Dissolved organic carbon (DOC), humic‐like DOM and fluorescence index were most sensitive to changes with drainage scale, whereas dissolved organic nitrogen, specific UV absorbance, Sr and protein‐like DOM were least sensitive. DOM concentrations and humic‐like DOM constituents were highest during both baseflow and stormflow for a 3.5‐ha catchment with a wetland near the catchment outlet. Whereas storm‐event concentrations of DOC and humic DOM constituents declined, the mass exports of DOC increased with increasing catchment scale. A pronounced dilution in storm‐event DOC concentration was observed at peak stream discharge for the 12‐ha drainage location, which was not as apparent at the 79‐ha scale, suggesting key differences in supply and transport of DOM. Our observations indicate that hydrologic flow paths, especially during storms, and the location and extent of wetlands in the catchment are key determinants of DOM concentration and composition. This study furthers our understanding of changes in DOM with drainage scale and the controls on DOM in headwater, forested catchments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
46.
The most popular practice for analysing nonstationarity of flood series is to use a fixed single‐type probability distribution incorporated with the time‐varying moments. However, the type of probability distribution could be both complex because of distinct flood populations and time‐varying under changing environments. To allow the investigation of this complex nature, the time‐varying two‐component mixture distributions (TTMD) method is proposed in this study by considering the time variations of not only the moments of its component distributions but also the weighting coefficients. Having identified the existence of mixed flood populations based on circular statistics, the proposed TTMD was applied to model the annual maximum flood series of two stations in the Weihe River basin, with the model parameters calibrated by the meta‐heuristic maximum likelihood method. The performance of TTMD was evaluated by different diagnostic plots and indexes and compared with stationary single‐type distributions, stationary mixture distributions and time‐varying single‐type distributions. The results highlighted the advantages of TTMD with physically‐based covariates for both stations. Besides, the optimal TTMD models were considered to be capable of settling the issue of nonstationarity and capturing the mixed flood populations satisfactorily. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
47.
以非岩溶区林地为对比,分析了桂林毛村岩溶区4种不同植被类型土壤微生物数量及碳酸酐酶(CA)活性的季度动态变化规律,发现以下主要结果:1随着植被的正向演替,岩溶区弃耕地、草地、灌丛及林地微生物数量及CA活性逐渐升高,微生物总数从64.07×10~4cfu/g上升到178.23×10~4cfu/g,CA活性从0.77 U/g上升到1.82 U/g,岩溶区林地大于非岩溶区林地。2在岩溶区不同植被类型,微生物组成均表现为细菌最多(平均值95.14%),放线菌次之(平均值2.79%),真菌数量最少(平均值1.75%)。而在非岩溶区表现为细菌最多(平均值90.95%),真菌次之(平均值5.32%),放线菌最少(平均值3.73%)。3微生物数量季节动态整体表现为春季至夏季逐渐上升,至秋季达到最高,冬季下降,微生物总数的增长依赖于细菌的倍数增长,真菌和放线菌影响较小。CA活性整体表现为夏季和冬季低于春季和秋季,秋季达到最大值。4 CA活性与细菌及微生物总数呈极显著的正相关,表明土壤CA主要来源于细菌的分泌。  相似文献   
48.
针对城区内涝淹没范围和水深模拟问题,该文提出了一种基于约束Delaunay不规则三角网与三棱柱的城区内涝淹没模拟算法。该算法以沿地面三角形的顶点垂直向上引垂线形成的三棱柱为计算单元,通过"等体积"的方法,建立时间序列切片下的淹没水深和积水量的关系,据此实现淹没范围和水深模拟。以北京师范大学(简称"北师大")主校区为例,对单汇水区的水面高程上升模拟结果与实际观测值进行对比,基本吻合;并与传统栅格DEM的淹没效果进行了对比,表明该算法正确有效。  相似文献   
49.
变化环境下渭河流域水文干旱演变特征剖析   总被引:4,自引:0,他引:4       下载免费PDF全文
环境变化影响区域水资源的可持续开发利用,导致水文过程出现非平稳特征,需发展非平稳水文干旱评估方法。选取渭河流域为研究区,依据流域内2个水文站、62个雨量站和24个气象站1961-2013年数据,基于可变下渗容量模型定量分离气候变化和人类活动对径流衰减的贡献;采用标准化径流指数(Standardized Runoff Index, SRI)剖析水文干旱时空演变特征;提出多种SRI参数化方案,对比评定各方案表征非平稳干旱的合理性以及环境变化对干旱演变的影响作用。结果表明:自1991年以来渭河流域年径流量呈显著衰减趋势,人类活动是径流演变的主要因素,对咸阳和华县站径流量变化的贡献率分别为-66.7%和-71.0%;时变参数方案计算的干旱指数能合理重建历史水文干旱序列;人类活动是渭河流域1991年以来短历时水文干旱发生的主导因素,气候变化主要影响长历时旱涝的演变趋势。  相似文献   
50.
位于柴达木盆地南缘的格尔木河发源于东昆仑山脉,末端注入盆地中东部的察尔汗盐湖,是该盐湖最主要的补给河流,极大地影响着该盐湖的成盐演化过程。格尔木河的主要支流—昆仑河和雪水河都是由冰川融水形成,因此该流域内的冰川进退对河流径流量变化和谷地填充地层的物源有着重要影响。该流域内主要的填充地层为昆仑河砾岩(河流相)、纳赤台沟组(冲洪积相)和三岔河组(河湖相)。在三岔河组之上,发育了4~5级阶地,除最高的T5之外,其它均为以三岔河组为基座的内叠阶地(少部分河段以昆仑河砾岩为基座)。根据前人的研究,昆仑河砾岩沉积的年代为1 269~1 042 ka(ESR年龄);纳赤台沟组堆积于482~642 ka之间(ESR和TL年龄);三岔河组形成于355~95 ka(ESR和U系年龄)、90~16 ka(OSL年龄),T5~T1阶地基本形成于16~4.6 ka之间。由于采用的测年方法不同,不同学者对三岔河组的形成时代存在争议,对阶地的划分也有所不同(4级或5级阶地)。但是,对T5~T1阶地形成时代有较一致的观点,即末次冰消期和全新世早中期。对于格尔木河河流地貌过程的驱动因素,目前尚存在争论,大部分学者认为是气候变化驱动了该区域河流地貌的形成,但也有学者认为构造活动是主导因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号