首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607篇
  免费   101篇
  国内免费   70篇
测绘学   28篇
大气科学   74篇
地球物理   167篇
地质学   332篇
海洋学   31篇
天文学   78篇
综合类   13篇
自然地理   55篇
  2022年   4篇
  2021年   11篇
  2020年   22篇
  2019年   14篇
  2018年   14篇
  2017年   15篇
  2016年   15篇
  2015年   25篇
  2014年   36篇
  2013年   22篇
  2012年   23篇
  2011年   61篇
  2010年   49篇
  2009年   28篇
  2008年   29篇
  2007年   24篇
  2006年   37篇
  2005年   26篇
  2004年   27篇
  2003年   35篇
  2002年   32篇
  2001年   18篇
  2000年   22篇
  1999年   16篇
  1998年   24篇
  1997年   24篇
  1996年   21篇
  1995年   29篇
  1994年   16篇
  1993年   19篇
  1992年   14篇
  1991年   10篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1978年   1篇
排序方式: 共有778条查询结果,搜索用时 359 毫秒
51.
张强地区位于中朝地台北缘的吉黑地槽区,其基底岩系和构造特征与中朝地台的基底和构造特征有明显的差别,通过200km的折射波法探测,得出如下结论:(1)本区基底构造线方向呈现近SN或NNW向,二条此方向的断层划分出三个构造单元。(2)该区内中生代前基底分为两套地层,其岩性、断层特征和基底埋深均有差别。  相似文献   
52.
 Persistent activity at Masaya Volcano, Nicaragua, is characterised by cycles of intense degassing, lava lake development and pit crater formation. It provides a useful site to study the processes which govern such activity, because of its easy accessibility and relatively short cycles (years to decades). An understanding of the present activity is important because Masaya is visited by large numbers of tourists, is located close to major cities and has produced voluminous lavas, plinian eruptions and ignimbrites in the recent past. We provide structural and geophysical data that characterise the "normal" present state of activity. These indicate that the ongoing degassing phase (1993 to present) was not caused by fresh magma intrusion. It was associated with shallow density changes within the active Santiago pit crater. The activity appears to be associated predominantly with shallow changes in the pit crater structure. More hazardous activity will occur only if there are significant departures from the present gravity, deformation and seismic signatures. Received: 16 May 1997 / Accepted: 29 October 1997  相似文献   
53.
Despite the importance of the socio-economic dimension of the use of marine waters, there has been little research in the field until recently, when interest has grown in the concept of ‘blue growth'. This paper aims to contribute to filling this gap with a socio-economic assessment of the main maritime sectors, focused on the Spanish part of the European Atlantic Arc. To this end, it first proposes a theoretical structure for the maritime economy and then collects and classifies comparable and reliable maritime socio-economic indicators. The data obtained allows us to assess the size of the Spanish maritime sector and the position of the Spanish Maritime Cluster in the wider context of the maritime economy of the European Atlantic, as well as discuss the appropriateness of a strategy of forming clusters at the national level vs. a transnational approach. The results indicate differences between regions in the European Atlantic Arc that complicate the development of integrated policies to stimulate blue growth. Extending our knowledge of the maritime economy of the European Atlantic Arc will make it possible to design strategies that address the real issues, increasing the likelihood of these being effective.  相似文献   
54.
研究了东营凹陷八面河北部斜坡带的断裂特征、构造演化特征及其形成机制,明确了该区的断裂展布特点和断层活动性,弄清了北部斜坡带的演化规律,同时分析该区的构造变形特征。结果表明:中生代以后,八面河地区存在2种独立的构造变形系统:一是板块边缘相互作用力;二是到后期由于板块的持续俯冲,地幔底辟作用在岩石圈底面产生的牵引力。八面河北部地区在这2种构造力的综合作用下,不同时期表现出不同的构造变形特征。  相似文献   
55.
薛霖  李英  许映龙  王蕾  戴高菊 《大气科学》2015,39(4):789-801
台风在趋近大陆过程中强度一般衰减, 但Meranti(1010)北上进入台湾海峡过程中却迅速加强, 且在登陆福建时达到最强。采用中国气象局台风资料、NCEP GFS 0.5°×0.5°再分析资料及台湾雷达资料, 结合中尺度数值模式WRF(The Weather Research and Forecasting Model)开展台湾地形敏感性试验, 研究Meranti进入台湾海峡过程中的结构变化及迅速加强机理。结果表明:台湾地形是Meranti迅速加强的一个重要影响因子。Meranti北上过程中, 一方面通过台湾岛地形分流作用及其背风坡效应在台湾海峡内诱生中尺度涡旋, 形成正负相间的涡度分布, 激发出与台风相关的扰动波列。地形强迫抬升及扰动波列可加强垂直运动和积云对流, 有利于台风对流发展。另一方面, 台湾地形还通过改变环境气流使台风高空辐散场加强, 环境风垂直切变减小, 形成有利于台风发展的环流背景。比较不同高度台湾地形试验中台风动能收支发现, 台湾地形激发的扰动波列和积云对流增强了次网格尺度系统与台风间能量的交换, 成为Meranti登陆前迅速加强的主要动能源。  相似文献   
56.
Mid-infrared 7-20 μm imaging of Jupiter from ESO’s Very Large Telescope (VLT/VISIR) demonstrate that the increased albedo of Jupiter’s South Equatorial Belt (SEB) during the ‘fade’ (whitening) event of 2009-2010 was correlated with changes to atmospheric temperature and aerosol opacity. The opacity of the tropospheric condensation cloud deck at pressures less than 800 mbar increased by 80% between May 2008 and July 2010, making the SEB (7-17°S) as opaque in the thermal infrared as the adjacent equatorial zone. After the cessation of discrete convective activity within the SEB in May 2009, a cool band of high aerosol opacity (the SEB zone at 11-15°S) was observed separating the cloud-free northern and southern SEB components. The cooling of the SEBZ (with peak-to-peak contrasts of 1.0 ± 0.5 K), as well as the increased aerosol opacity at 4.8 and 8.6 μm, preceded the visible whitening of the belt by several months. A chain of five warm, cloud-free ‘brown barges’ (subsiding airmasses) were observed regularly in the SEB between June 2009 and June 2010, by which time they too had been obscured by the enhanced aerosol opacity of the SEB, although the underlying warm circulation was still present in July 2010. Upper tropospheric temperatures (150-300 mbar) remained largely unchanged during the fade, but the cool SEBZ formation was detected at deeper levels (p > 300 mbar) within the convectively-unstable region of the troposphere. The SEBZ formation caused the meridional temperature gradient of the SEB to decrease between 2008 and 2010, reducing the vertical thermal windshear on the zonal jets bounding the SEB. The southern SEB had fully faded by July 2010 and was characterised by short-wave undulations at 19-20°S. The northern SEB persisted as a narrow grey lane of cloud-free conditions throughout the fade process.The cool temperatures and enhanced aerosol opacity of the SEBZ after July 2009 are consistent with an upward flux of volatiles (e.g., ammonia-laden air) and enhanced condensation, obscuring the blue-absorbing chromophore and whitening the SEB by April 2010. These changes occurred within cloud decks in the convective troposphere, and not in the radiatively-controlled upper troposphere. NH3 ice coatings on aerosols at p < 800 mbar are plausible sources of the suppressed 4.8 and 8.6-μm emission, although differences in the spatial distribution of opacity at these two wavelengths suggest that enhanced attenuation by a deeper cloud (p > 800 mbar) also occurred during the fade. Revival of the dark SEB coloration in the coming months will ultimately require sublimation of these ices by subsidence and warming of volatile-depleted air.  相似文献   
57.
This study presents the latest results on the mesospheric CO2 clouds in the martian atmosphere based on observations by OMEGA and HRSC onboard Mars Express. We have mapped the mesospheric CO2 clouds during nearly three martian years of OMEGA data yielding a cloud dataset of ∼60 occurrences. The global mapping shows that the equatorial clouds are mainly observed in a distinct longitudinal corridor, at seasons Ls = 0-60° and again at and after Ls = 90°. A recent observation shows that the equatorial CO2 cloud season may start as early as at Ls = 330°. Three cases of mesospheric midlatitude autumn clouds have been observed. Two cloud shadow observations enabled the mapping of the cloud optical depth (τ = 0.01-0.6 with median values of 0.13-0.2 at λ = 1 μm) and the effective radii (mainly 1-3 μm with median values of 2.0-2.3 μm) of the cloud crystals. The HRSC dataset of 28 high-altitude cloud observations shows that the observed clouds reside mainly in the altitude range ∼60-85 km and their east-west speeds range from 15 to 107 m/s. Two clouds at southern midlatitudes were observed at an altitude range of 53-62 km. The speed of one of these southern midlatitude clouds was measured, and it exhibited west-east oriented speeds between 5 and 42 m/s. The seasonal and geographical distribution as well as the observed altitudes are mostly in line with previous work. The LMD Mars Global Climate Model shows that at the cloud altitude range (65-85 km) the temperatures exhibit significant daily variability (caused by the thermal tides) with the coldest temperatures towards the end of the afternoon. The GCM predicts the coldest temperatures of this altitude range and the season Ls = 0-30° in the longitudinal corridor where most of the cloud observations have been made. However, the model does not predict supersaturation, but the GCM-predicted winds are in fair agreement with the HRSC-measured cloud speeds. The clouds exhibit variable morphologies, but mainly cirrus-type, filamented clouds are observed (nearly all HRSC observations and most of OMEGA observations). In ∼15% of OMEGA observations, clumpy, round cloud structures are observed, but very few clouds in the HRSC dataset show similar morphology. These observations of clumpy, cumuliform-type clouds raise questions on the possibility of mesospheric convection on Mars, and we discuss this hypothesis based on Convective Available Potential Energy calculations.  相似文献   
58.
We present measurements of the altitude and eastward velocity component of mesospheric clouds in 35 imaging sequences acquired by the Mars Odyssey (ODY) spacecraft’s Thermal Emission Imaging System visible imaging subsystem (THEMIS-VIS). We measure altitude by using the parallax drift of high-altitude features, and the velocity by exploiting the time delay in the THEMIS-VIS imaging sequence.We observe two distinct classes of mesospheric clouds: equatorial mesospheric clouds observed between 0° and 180° Ls; and northern mid-latitude clouds observed only in twilight in the 200–300° Ls period. The equatorial mesospheric clouds are quite rare in the THEMIS-VIS data set. We have detected them in only five imaging sequences, out of a total of 2048 multi-band equatorial imaging sequences. All five fall between 20° south and 0° latitude, and between 260° and 295° east longitude. The mid-latitude mesospheric clouds are apparently much more common; for these we find 30 examples out of 210 northern winter mid-latitude twilight imaging sequences. The observed mid-latitude clouds are found, with only one exception, in the Acidalia region, but this is quite likely an artifact of the pattern of THEMIS-VIS image targeting. Comparing our THEMIS-VIS images with daily global maps generated from Mars Orbiter Camera Wide Angle (MOC-WA) images, we find some evidence that some mid-latitude mesospheric cloud features correspond to cloud features commonly observed by MOC-WA. Comparing the velocity of our mesospheric clouds with a GCM, we find good agreement for the northern mid-latitude class, but also find that the GCM fails to match the strong easterly winds measured for the equatorial clouds.Applying a simple radiative transfer model to some of the equatorial mesospheric clouds, we find good model fits in two different imaging sequences. By using the observed radiance contrast between cloud and cloud-free regions at multiple visible-band wavelengths, these fits simultaneously constrain the optical depths and particles sizes of the clouds. The particle sizes are constrained primarily by the relative contrasts at the available wavelengths, and are found to be quite different in the two imaging sequences: reff = 0.1 μm and reff = 1.5 μm. The optical depths (constrained by the absolute contrasts) are substantial: 0.22 and 0.5, respectively. These optical depths imply a mass density that greatly exceeds the saturated mass density of water vapor at mesospheric temperatures, and so the aerosol particles are probably composed mainly of CO2 ice. Our simple radiative transfer model is not applicable to twilight, when the mid-latitude mesospheric clouds were observed, and so we leave the properties of these clouds as a question for further work.  相似文献   
59.
Conflicting observations regarding the dominance of either sublimation or volcanism as the source of the atmosphere on Io and disparate reports on the extent of its spatial distribution and the absolute column abundance invite the development of detailed computational models capable of improving our understanding of Io’s unique atmospheric structure and origin. Improving upon previous models, Walker et al. (Walker, A.C., Gratiy, S.L., Levin, D.A., Goldstein, D.B., Varghese, P.L., Trafton, L.M., Moore, C.H., Stewart, B. [2009]. Icarus) developed a fully 3-D global rarefied gas dynamics model of Io’s atmosphere including both sublimation and volcanic sources of SO2 gas. The fidelity of the model is tested by simulating remote observations at selected wavelength bands and comparing them to the corresponding astronomical observations of Io’s atmosphere. The simulations are performed with a new 3-D spherical-shell radiative transfer code utilizing a backward Monte Carlo method. We present: (1) simulations of the mid-infrared disk-integrated spectra of Io’s sunlit hemisphere at 19 μm, obtained with TEXES during 2001-2004; (2) simulations of disk-resolved images at Lyman-α obtained with the Hubble Space Telescope (HST), Space Telescope Imaging Spectrograph (STIS) during 1997-2001; and (3) disk-integrated simulations of emission line profiles in the millimeter wavelength range obtained with the IRAM-30 m telescope in October-November 1999. We found that the atmospheric model generally reproduces the longitudinal variation in band depth from the mid-infrared data; however, the best match is obtained when our simulation results are shifted ∼30° toward lower orbital longitudes. The simulations of Lyman-α images do not reproduce the mid-to-high latitude bright patches seen in the observations, suggesting that the model atmosphere sustains columns that are too high at those latitudes. The simulations of emission line profiles in the millimeter spectral region support the hypothesis that the atmospheric dynamics favorably explains the observed line widths, which are too wide to be formed by thermal Doppler broadening alone.  相似文献   
60.
通过分析辽东地区深部和浅部构造特点,研究汤岗子地热田的成因,查明地热系统的储、盖、通、源,建立热水系统的概念模型:深部构造是地热发育的重要背景条件,在其影响下的浅部构造体系构成了基岩地区地下裂隙水的运移通道和赋存空间,深循环水在运移途中接受来自深部的热流加热形成热水,并在一定条件下出露地表形成温泉,同一个区域地下水流动系统可以发育多个热储,各个热储之间存在间接的能量和物质联系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号