首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   539篇
  免费   74篇
  国内免费   84篇
测绘学   92篇
大气科学   116篇
地球物理   136篇
地质学   104篇
海洋学   87篇
天文学   14篇
综合类   34篇
自然地理   114篇
  2024年   2篇
  2023年   6篇
  2022年   15篇
  2021年   11篇
  2020年   20篇
  2019年   16篇
  2018年   18篇
  2017年   31篇
  2016年   39篇
  2015年   30篇
  2014年   47篇
  2013年   71篇
  2012年   30篇
  2011年   34篇
  2010年   25篇
  2009年   45篇
  2008年   36篇
  2007年   37篇
  2006年   25篇
  2005年   20篇
  2004年   19篇
  2003年   21篇
  2002年   14篇
  2001年   17篇
  2000年   6篇
  1999年   9篇
  1998年   14篇
  1997年   9篇
  1996年   8篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1981年   1篇
排序方式: 共有697条查询结果,搜索用时 15 毫秒
31.
Abstract

Surveys in the Middle Estuary of the St Lawrence have yielded a data base consisting of more than 15,000 T‐S pairs distributed over 62 13‐h profiling stations. Although the T‐S curves at each station are remarkably linear, the variability of the slopes and intercepts of the lines is considerable. The means and standard deviations of the temperature and salinity at each individual station are not explicable in terms of linear combinations of the parameters for location in the Estuary, the upstream water properties, the phase of the spring‐neap cycle and the tidal energies.

It is shown that the tidally‐averaged density structure is separable into horizontal and vertical components and that its vertical variation over the whole Estuary may be explained by any one of three different functional forms. However, its horizontal variation is not explicable in terms of linear combinations of the parameters mentioned in the paragraph above.

Plots of the horizontal variations in temperature, salinity or density may only be meaningful if the data are collected synoptically, and even then cannot be considered to be accurate over time‐scales longer than one tidal cycle.  相似文献   
32.
Abstract

This work deals with the problem of the use of remote sensing data derived from NOAA/AVHRR observations for monitoring the West African Sahel climatic variability. NDVI is widely used in hydrological and climatological research, and in the study of global climatic changes. The relationships between NDVI and climatic parameters are not well established yet and are the focus of many studies. The relationships between NDVI and rainfall were studied at a 10-day time step in the Nakambe River basin in Burkina Faso in the Sahelo-Sudanian area over the years 1982–1999. Good correlations were found in the annual evolution of these two variables. The statistical analysis shows a significant relationship between NDVI and the sum of the annual rainfall with determination coefficients greater than 0.80. At the spatial scale of 0.5° × 0.5°, the determination coefficient ranges from 0.91 to 0.96. It was also found that the NDVI is a good indicator of the determination of the beginning and the end of the rainy season. It gives reasonably good results in comparison with the other methods commonly used in the study region.  相似文献   
33.
34.
Drought detection, monitoring and indices are closely related to its definition. The specific definition chosen for a particular drought analysis will affect the procedures one uses in drought detection and monitoring. The traditional Palmer Drought Severity Index (PDSI) has been proven to be ineffective in regions of predominantly irrigated agriculture.The recently developed ALERT (Automated Local Evaluation in Real Time) system is proposed for use in monitoring the spatial and temporal variations of drought in real time. The ALERT system uses standardized instruments, radio frequencies, software and hardware. It was originally developed as a flash flood waming system by local flood control districts and the National Weather Service. However, now it has expanded to over 100 other uses in the areas of natural and man-made disaster detection and warning. The successful ALERT system indicates the need for the continued development of a national drought monitoring index that is applicable to a wide range of climate, hydrologic and water resource environments.  相似文献   
35.
工程岩体断裂构造发育程度的定量评价研究IAEG信息(会讯)   总被引:2,自引:2,他引:2  
岩体断裂构造发育程度及其均匀性是影响岩体结构类型、岩体质量优劣及岩体稳定性分析以及工程岩体综合分区利用的重要因素, 因此岩体断裂构造发育程度的定量评价具有重要的工程意义。本文以三峡工程永久船闸边坡工程为例, 系统地讨论了工程岩体断裂构造发育程度的评价方法、定量评价指标的确定原则、断裂构造发育程度的分级标准等。研究表明, 根据岩体断裂构造发育特点, 综合运用多层次模糊综合评判法和人工神经网络技术是评价工程岩体断裂构造发育程度的有效方法。  相似文献   
36.
Fragility curves express the probability of structural damage due to earthquakes as a function of ground motion indices, e.g., PGA, PGV. Based on the actual damage data of highway bridges from the 1995 Hyogoken‐Nanbu (Kobe) earthquake, a set of empirical fragility curves was constructed. However, the type of structure, structural performance (static and dynamic) and variation of input ground motion were not considered to construct the empirical fragility curves. In this study, an analytical approach was adopted to construct fragility curves for highway bridge piers of specific bridges. A typical bridge structure was considered and its piers were designed according to the seismic design codes in Japan. Using the strong motion records from Japan and the United States, non‐linear dynamic response analyses were performed, and the damage indices for the bridge piers were obtained. Using the damage indices and ground motion indices, fragility curves for the bridge piers were constructed assuming a lognormal distribution. The analytical fragility curves were compared with the empirical ones. The proposed approach may be used in constructing the fragility curves for highway bridge structures. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
37.
ABSTRACT

We designed a unique hyperspectral experiment from the Earth Observing One (EO-1) orbit change to evaluate solar illumination effects over tropical forests in Brazil. Ten nadir-viewing Hyperion images collected over a fixed site and period of the year (July to August) were selected for analysis. We evaluated variations in reflectance and in 16 narrowband vegetation indices (VIs) with increasing solar zenith angle (SZA) from the pre-drift (2004–2008) to the EO-1 drift period (2011–2016). To detect changes in reflectance and shadows, we applied spectral mixture analysis (SMA) and principal component analysis (PCA) and calculated the similarity spectral angle (θ) between the vegetation spectra measured with variable SZA. The magnitude of the illumination effects was also evaluated from change-point analysis and nonparametric Mann-Whitney U tests applied over the time series. Finally, we complemented our experiment using the PROSAIL model to simulate the VIs variation with increasing SZA resultant from satellite drift. The results showed significant changes in Hyperion reflectance and VIs, especially when the EO-1 crossed the study area at earlier times and larger SZA in 2015 (9:05 a.m.; SZA = 59°) and 2016 (8:30 a.m.; SZA = 67°). Compared to the pre-drift period (10:30 a.m.; SZA = 45°), the SZA differences of 14° (2015) and 22° (2016) increased the shade fractions and decreased the vegetation brightness. PCA separated the pre-drift and drift reflectance datasets, showing shifts in scores due to changes in brightness. θ increased with SZA, indicating changes in the shape of the vegetation spectra with drift. For most VIs, the change-point analysis indicated 2015 (SZA = 59°) as the predominant year of detected changes. Compared to the EO-1 original orbit, the Plant Senescence Reflectance Index (PSRI), Anthocyanin Reflectance Index (ARI) and Structure Insensitive Pigment Index (SIPI) presented the largest positive changes during drift, while the Photochemical Reflectance Index (PRI), Visible Atmospherically Resistant Index (VARI) and Enhanced Vegetation Index (EVI) had the largest negative changes. The effect size of the illumination geometry on these VIs was large, as indicated by increasing values of the Cohen’s r metric toward 2016. The anisotropy of the Hyperion VIs was generally consistent with that from PROSAIL in the simulated pre-drift and drift periods. Focusing on structural indices, it affected the relationships between VIs and simulated leaf area index (LAI) at large SZA.  相似文献   
38.
A prerequisite of a successful statistical downscaling is that large-scale predictors simulated by the General Circulation Model (GCM) must be realistic. It is assumed here that features smaller than the GCM resolution are important in determining the realism of the large-scale predictors. It is tested whether a three-step method can improve conventional one-step statistical downscaling. The method uses predictors that are upscaled from a dynamical downscaling instead of predictors taken directly from a GCM simulation. The method is applied to downscaling of monthly precipitation in Sweden. The statistical model used is a multiple regression model that uses indices of large-scale atmospheric circulation and 850-hPa specific humidity as predictors. Data from two GCMs (HadCM2 and ECHAM4) and two RCM experiments of the Rossby Centre model (RCA1) driven by the GCMs are used. It is found that upscaled RCA1 predictors capture the seasonal cycle better than those from the GCMs, and hence increase the reliability of the downscaled precipitation. However, there are only slight improvements in the simulation of the seasonal cycle of downscaled precipitation. Due to the cost of the method and the limited improvements in the downscaling results, the three-step method is not justified to replace the one-step method for downscaling of Swedish precipitation.  相似文献   
39.
为了促进现代化的实现,作者试图找出中国与发达国家之间的经济差距,并选取了世界银行公布数据的三个指标,代入自己设计的简便公式,测得中国与韩国、希腊的经济差距为26年(以2000年基准)。于是作者将发达国家分为一般发达国家和高度发达国家,把发展中国家分为一般发展中国家和发展中的发达国家。作者预计2020年中国将达到发展中的发达国家水平。并预测中国将在2007年经济总量超英国;中国与英国的人均水平差距约为34年。中国与美国经济总量的差距约为35年,中美之间的人均水平差距约为44年,动态差距将在50年以上。结论,中国在2030年将可达到一般发达国家水平,即可实现现代化。  相似文献   
40.
本文采用蚀源区判别图解QFL和QpLsLv、微量元素图解Th -Co -Zr/10、常量元素图解K2O/Na2O -SiO2 和野外地质实测剖面等方法 ,对比如、措勤地体的构造演化进行了分析。发现并证实了在T3-J1 以前比如地体位于措勤地体的北部 :J2 -3 时随着班—恕缝合带的拉张 ,比如地体开始右旋向东滑动 :一直延续到J3-K1 时 ,班—怒缝合带闭合 ,比如地体才就位于目前位置。最后应用1/ZTR指数推测了比如地体在J2 -3 时滑移点的大致位置 (E90°49,N31°34)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号