首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   45篇
  国内免费   65篇
测绘学   2篇
地球物理   8篇
地质学   649篇
海洋学   2篇
综合类   8篇
自然地理   6篇
  2023年   5篇
  2022年   2篇
  2021年   15篇
  2020年   20篇
  2019年   17篇
  2018年   8篇
  2017年   8篇
  2016年   12篇
  2015年   3篇
  2014年   75篇
  2013年   34篇
  2012年   48篇
  2011年   60篇
  2010年   46篇
  2009年   43篇
  2008年   37篇
  2007年   33篇
  2006年   27篇
  2005年   22篇
  2004年   23篇
  2003年   24篇
  2002年   21篇
  2001年   24篇
  2000年   13篇
  1999年   16篇
  1998年   9篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
排序方式: 共有675条查询结果,搜索用时 15 毫秒
91.
新疆哈密卡拉塔格铜(锌)矿红石幅(K46E009008)1∶50 000矿产地质图数据库是根据《固体矿产地质调查技术要求(1∶50 000)》(DD2019-02)和行业其他标准及要求,在充分利用1∶200 000、1∶50 000等区域地质调查工作成果资料的基础上,采用数字填图系统进行野外地质专项填图,并应用室内与室外填编图相结合的方法完成。本数据库将中-上奥陶统荒草坡群大柳沟组、下志留统红柳峡组和卡拉塔格组的建造类型进行了重新划分,把图幅内侵入岩时代划分为志留纪、泥盆纪、二叠纪等3期,建立了岩浆岩演化序列。图幅区内有大中小型矿床和矿点共8个,成矿时代集中分布在志留纪、石炭纪,赋矿围岩为火山碎屑岩和次火山岩,该区优势矿产以铜锌金为主,矿床类型以VMS型和次火山热液脉型矿床为主,分布在图幅东南一带。除金属矿产外,尚有膨润土矿床产出,具有较好的找矿潜力。本数据库包含5个地层单位和3期岩浆岩资料,数据量约为 15.1 MB。这些数据充分反映了该图幅 1∶50 000 矿产地质调查示范性成果,对该区矿产资源研究和勘查等具有参考意义。  相似文献   
92.
广南县老寨湾金矿位于滇、黔、桂“金三角”重要成矿区带上,金矿体矿体呈似层状赋存于断层构造破碎带或层间构造破碎带中,构造控矿明显。矿体围岩均为下泥盆统坡松冲组第一段(D1ps1)硅化石英砂岩;矿床成因属中-低温热液叠加改造型金矿床,断层构造、硅化等矿化蚀变及地球化学异常是重要的找矿标志。  相似文献   
93.
陈旭  许乔 《云南地质》2020,(1):31-36
贵州松桃县木耳溪锰矿为典型的层控型锰矿床,矿体呈层状赋存于南华系下统大塘坡组第一段(Pt2b3d 1)底部的炭质页岩中,产出层位稳定,矿体产状与围岩产状一致。通过统计对比,锰矿层的矿化程度与含锰岩系的厚度呈正比,即当南华系大塘坡组地层厚度大于15m时,有可能成为锰矿的主要找矿方向。  相似文献   
94.
乌拉嘎金矿床地质地球化学特征研究   总被引:8,自引:3,他引:5  
乌拉嘎金矿矿体赋存于燕山晚期的斜长花岗斑岩与黑龙江群下亚群接触带附近的近东西向展布的构造角砾岩中,围岩蚀变强烈;金矿化主要受角砾岩带控制。矿床成矿微量元素组合为Au、Hg、As、Sb,且含量均呈向下递增的趋势。LaN/YbN值变化范围为14.146~28.311,稀土元素配分模式为右倾的轻稀土富集型;∑LREE:165.76~62.68;∑HREE:45.82~15.2;LREE/HREE为6.09~4.124,为轻稀土富集型。岩体中流体包裹体以低盐、低压且有天水加入为特征,为典型的浅成低温热液型矿床。  相似文献   
95.
文章阐述了龙头山银铅锌多金属矿床的地质特征,初步确定了矿床的成矿期与成矿阶段、蚀变作用与蚀变分带,以及控矿构造系统与空间变化等;通过合理的探矿工程并借助于先进的地球物理探测手段,基本探明了Ⅰ、Ⅱ号矿带内矿体的空间产出形态、规模和产状,大致查明了矿石的类型、结构构造以及矿化特征,并合理地圈定了矿体;通过综合取样分析,估算并预测了远景资源储量.  相似文献   
96.
河南省商城县汤家坪钼矿床地质和流体包裹体研究   总被引:21,自引:15,他引:6  
河南省商城县汤家坪钼矿床产于大别造山带,属于陆-陆碰撞体制的斑岩型矿床。其流体成矿过程可以分为早、中、晚3个阶段,分别以石英-钾长石-磁铁矿-辉钼矿-黄铁矿、石英-多金属硫化物和石英-碳酸盐±黄铁矿组合为标志。石英中可见水溶液包裹体、CO2-H2O型包裹体、纯CO2包裹体和含子晶多相包裹体,但晚阶段石英中只有水溶液包裹体。早阶段和中阶段还发育特殊的含子晶的CO2包裹体,这在以往的斑岩型矿床中鲜有报道。早阶段流体包裹体均一温度>375℃,盐度最高可达62.10%NaCleqv,包裹体内含大量指示氧化条件的赤铁矿子晶以及一些石盐、钾盐、黄铜矿、脆硫锑铅矿子晶。中阶段包裹体均一温度集中在235~335℃,盐度为1.06%~45.87%NaCleqv。除石盐、钾盐子晶外,还含大量黄铜矿、脆硫锑铅矿子晶,表明中阶段还原性较强。晚阶段流体包裹体均一温度集中在115~195℃,盐度较低,介于1.91%~9.98%NaCleqv。中阶段强烈的流体沸腾作用是导致成矿物质快速沉淀的重要机制。总之,初始成矿流体为岩浆热液,以高温、高盐度、高氧化性、富CO2、高金属元素含量为特征;中阶段流体发生沸腾,导致CO2逃逸,氧化性降低,成矿物质快速沉淀;晚阶段流体以低温、低盐度、无子晶、贫CO2为特征,属于大气降水热液。汤家坪钼矿床发育特殊的含子晶的CO2包裹体,可作为大陆碰撞造山带产出富含CO2的斑岩成矿系统的典型实例。  相似文献   
97.
The Ni-Co-(PGE) sulfide deposits of the Thompson Nickel Belt (TNB) in Northern Manitoba, Canada are part of the fifth largest nickel camp in the world based on contained nickel; past production from the TNB deposits is 2500 kt Ni. The Thompson Deposit is located on the eastern and southern flanks of the Thompson Dome structure, which is a re-folded nappe structure formed during collision of the Trans-Hudson Orogen with the Canadian Shield at 1.9–1.7 Ga. The Thompson Deposit is almost entirely hosted by P2 member sulfidic metasedimentary rocks of the Paleoproterozoic Ospwagan Group. Variably serpentinised and altered dunites, peridotites and pyroxenites contain disseminated sulfides and have a spatial association with sediment-hosted Ni sulfides which comprise the bulk of the ore types. These rocks formed from rift-related komatiitic magmas that were emplaced at 1.88 Ga, and subsequently deformed by boudinage, thinning, folding, and stacking.Disseminated sulfide mineralization in the large serpentinised peridotite and dunite intrusions that host the Birchtree and Pipe Ni-Co sulfide deposits typically has 4–6 wt% Ni in 100% sulfide. The disseminated sulfides in the less abundant and much smaller boudinaged serpentinised peridotite and dunite bodies associated with the Thompson Deposit have 7–10 wt% Ni in 100% sulfide. The majority of Thompson Mine sulfides are hosted in the P2 member of the Pipe Formation which is a sulfidic schist developed from a shale prololith; the mineralization in the schist includes both low Ni tenor (<1 wt% Ni in sulfide) and barren sulfide (<200 ppm Ni) and a Ni-enriched sulfide with 1–18 wt% Ni in 100% sulfide. The semi-massive and massive sulfide ores show a similar range in Ni tenor to the metasediment-hosted mineralization, but there are discrete populations with maximum Ni tenors of ∼8, 11 and 13 wt% Ni in 100% sulfide. The variations in Ni tenor are related to the Ni/Co ratio (high Ni/Co correlates with high Ni tenor sulfide) and this relationship is produced by the different Ni/Co ratios in sulfides with a range in proportions of pyrrhotite and pentlandite. Geological models of the ore deposit, host rocks, and sulfide geochemical data in three dimensions reveal that the Thompson Deposit forms an anastomosing domain on the south and east flanks of a first order D3 structure which is the Thompson Dome. In detail, a series of second order doubly-plunging folds on the eastern and southern flank control the geometry of the mineral zones. The position of these folds on the flank of the Thompson Dome is a response to the anisotropy of the host rocks during deformation; ultramafic boudins and layers of massive quartzite in ductile metasedimentary rocks control the geometry of the doubly-plunging F3 structures. The envelope of mineralization is almost entirely contained within the P2 member of the Pipe formation, so the deposit is clearly folded by the first order and second order D3 structures. The sulfides with highest Ni tenor (typically >13 wt% Ni in sulfide) define a systematic trend that mirrors the configuration of the second order doubly-plunging F3 structures on the flanks of the Dome. Although moderate to high Ni tenor mineralization is sometimes localized in fold hinges, more typically the highest Ni tenor mineralization is located on the flanks of the fold structures.There is no indication of the mineralogical and geochemical signatures of sedimentary exhalative or hydrothermal processes in the genesis of the Thompson ores. The primary origin of the mineralization is undoubtedly magmatic and this was a critical stage in the development of economic mineralization. Variations in metal tenor in disseminated sulfides contained in ultramafic rock indicate a higher magma/sulfide ratio in the Thompson parental magma relative to Birchtree and Pipe. The variation in Ni tenor of the semi-massive and massive sulfide broadly supports this conclusion, but the variations in metal tenor in the Thompson ores was likely created partly during deformation. The sequence of rocks was modified by burial and loading of the crust (D2 events) to a peak temperature of 750 °C and pressure of 7.5 kbar. The third major phase of deformation (D3) was a sinistral transpression (D3 event) which generated the dome and basin configuration of the TNB. These conditions allowed for progressive deformation and reformation of pyrrhotite and pentlandite into monosulfide solid solution as pressure and temperature increased; this process is termed sulfide kinesis. Separation of the ductile monosulfide solid solution from granular pentlandite would result in an effective separation of Ni during metamorphism, and the monosulfide solid solution would likely be spread out in the stratigraphy to form a broad halo around the main deposit to produce the low Ni tenor sulfide. Reformation of pentlandite and pyrrhotite after the peak D2 event would explain the broad footprint of the mineral system. The effect of the D3 event at lower pressure and temperature would have been to locally redistribute, deform, and repeat the lenses of sulfide.The understanding of the relationships between petrology, stratigraphy, structure, and geochemistry has assisted in formulating a predictive exploration model that has triggered new discoveries to the north and south of the mine, and provides a framework for understanding ore genesis in deformed terrains and the future exploration of the Thompson Nickel Belt.  相似文献   
98.
侏罗纪是大别造山带与周缘盆地盆山关系研究的一个重要时期,分布在大别造山带周缘的侏罗纪地层为大别山的造山过程以及深俯冲岩石的折返、剥蚀提供了很好的约束。本文选取大别造山带东南缘安庆月山地区侏罗系磨山组为研究对象,对磨山组碎屑岩进行了详细的粒度分析、碎屑组分分析、重矿物分析和碎屑锆石年代学分析。碎屑岩岩石、沉积特征和粒度分析都指示早侏罗世磨山组为三角洲前缘水下分流河道沉积。碎屑组分分析、重矿物分析结合碎屑锆石年代学分析指示磨山组碎屑岩物源主要来自南侧的华南板块,大别造山带宿松杂岩可能为其提供了少量物源,但碎屑物源中未见石榴子石和典型的三叠纪变质锆石,说明此时大别高压-超高压榴辉岩可能仍未折返至地表。  相似文献   
99.
李映葵  曹建劲  陈杰  易杰 《岩石学报》2017,33(3):831-842
为探讨上升气流微粒与深部隐伏矿体之间关系,在广西清明山铜镍硫化物矿床上方土壤中采集上升气流微粒,并采用透射电子显微镜(TEM)对微粒的形貌、大小、聚合状态、化学组分及结构等进行分析。结果表明,微粒主要由Cu、Co、Zn、Fe、Ca、Si、S等元素组成,其中成矿元素Cu、Co以自然Cu-Fe-Co、Zn-Fe-Co及Fe-Co合金微粒的形式存在,其余如Fe、Ca、Si、S等元素则以氢氧化物、氧化物及碳酸盐微粒形式存在。微粒可分为微粒聚合体及单个微粒,微粒的大小为50~500nm,微粒的形状多为不规则状、近椭圆形、近球状、水滴状和近长方体等。微粒中高含量的Cu、Co、Zn来源于深部隐伏矿体,含Fe、S微粒来源于矿床中金属硫化物矿物。此外,高价态的微粒组分指示微粒处于相对氧化的环境。清明山铜镍硫化物矿床的上升气流微粒组分与矿床矿物组分间存在着较好的对应性,本研究为隐伏铜镍硫化物矿床提供了新的找矿方法。  相似文献   
100.
王绍明  涂国府 《云南地质》2009,28(4):374-379
矿区金、铜、钼矿化与碱性斑岩相关,向阳组碎屑岩是主要矿源层及赋矿地层,北东向响水断裂控矿,近东西向次级断裂及层间断裂为储(容)矿构造。多种条件耦合成矿。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号