首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7553篇
  免费   1297篇
  国内免费   675篇
测绘学   1452篇
大气科学   112篇
地球物理   1340篇
地质学   3408篇
海洋学   730篇
天文学   1547篇
综合类   399篇
自然地理   537篇
  2024年   11篇
  2023年   74篇
  2022年   230篇
  2021年   358篇
  2020年   301篇
  2019年   286篇
  2018年   171篇
  2017年   259篇
  2016年   252篇
  2015年   286篇
  2014年   479篇
  2013年   411篇
  2012年   453篇
  2011年   419篇
  2010年   335篇
  2009年   454篇
  2008年   472篇
  2007年   602篇
  2006年   461篇
  2005年   374篇
  2004年   357篇
  2003年   342篇
  2002年   287篇
  2001年   225篇
  2000年   243篇
  1999年   236篇
  1998年   227篇
  1997年   164篇
  1996年   170篇
  1995年   117篇
  1994年   91篇
  1993年   62篇
  1992年   68篇
  1991年   33篇
  1990年   54篇
  1989年   43篇
  1988年   36篇
  1987年   26篇
  1986年   19篇
  1985年   10篇
  1984年   6篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   5篇
  1978年   4篇
  1954年   4篇
排序方式: 共有9525条查询结果,搜索用时 187 毫秒
991.
以ETM、SPOT5和Quickbird为主要信息源,在哈拉阿拉特山地区开展1:5万区域地质填图,对该地区的地层单元、中—小规模地质体(如岩脉、小岩体和火山口)和地质构造特征进行了详细地遥感解译分析,并开展了大量的遥感野外地质调查验证.结果表明,采用彩色空间HSV变换融合法将SPOT5高精度遥感图像数据与ETM图像数据...  相似文献   
992.
We present the results of the continuation of our magnetic survey with FORS 1 at the VLT of a sample of B‐type stars consisting of confirmed or candidate β Cephei stars and Slowly Pulsating B (hereafter SPB) stars, along with a small number of normal B‐type stars. A weak mean longitudinal magnetic field of the order of a few hundred Gauss was detected in three β Cephei stars and two stars suspected to be β Cephei stars, in five SPB stars and eight stars suspected to be SPB stars. Additionally, a longitudinal magnetic field at a level larger than 3σ has been diagnosed in two normal B‐type stars, the nitrogen‐rich early B‐type star HD 52089 and in the B5 IV star HD 153716. Roughly one third of β Cephei stars have detected magnetic fields: Out of 13 β Cephei stars studied to date with FORS 1, four stars possess weak magnetic fields, and out of the sample of six suspected β Cephei stars two show a weak magnetic field. The fraction of magnetic SPBs and candidate SPBs is found to be higher: Roughly half of the 34 SPB stars have been found to be magnetic and among the 16 candidate SPBs eight stars possess magnetic fields. In an attempt to understand why only a fraction of pulsating stars exhibit magnetic fields, we studied the position of magnetic and non‐magnetic pulsating stars in the H‐R diagram. We find that their domains in the H‐R diagram largely overlap, and no clear picture emerges as to the possible evolution of the magnetic field across the main sequence. It is possible that stronger fields tend to be found in stars with lower pulsating frequencies and smaller pulsating amplitudes. A somewhat similar trend is found if we consider a correlation between the field strength and the v sin i ‐values, i.e. stronger magnetic fields tend to be found in more slowly rotating stars (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
993.
Collapse calculations indicate that the hot young neutron stars rotate differentially so that strong toroidal magnetic field components should exist in the outer shell where also the Hall effect appears to be important when the Hall parameter = ωBτ exceeds unity. The amplitudes of the induced toroidal magnetic fields are limited by the current‐induced Tayler instability. An important characteristics of the Hall effect is its distinct dependence on the sign of the magnetic field. We find for fast rotation that positive (negative) Hall parameters essentially reduce (increase) the stability domain. It is thus concluded that the toroidal field belts in young neutron stars induced by their differential rotation should have different amplitudes in both hemispheres which later are frozen in. Due to the effect of magnetic suppression of the heat conductivity also the brightness of the two hemispheres should be different. As a possible example for our scenario the isolated neutron star RBS 1223 is considered which has been found to exhibit different X‐ray brightness at both hemispheres (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
994.
We consider radiation emitted by the jitter mechanism in a Blandford–McKee self-similar blastwave. We assume the magnetic field configuration throughout the whole blastwave meets the condition for the emission of jitter radiation and we compute the ensuing images, light curves and spectra. The calculations are performed for both a uniform and a wind environment. We compare our jitter results to synchrotron results. We show that jitter radiation produces slightly different spectra than synchrotron, in particular between the self-absorption and the peak frequency, where the jitter spectrum is flat, while the synchrotron spectrum grows as  ν1/3  . The spectral difference is reflected in the early decay slope of the light curves. We conclude that jitter and synchrotron afterglows can be distinguished from each other with good quality observations. However, it is unlikely that the difference can explain the peculiar behaviour of several recent observations, such as flat X-ray slopes and uncorrelated optical and X-ray behaviour.  相似文献   
995.
996.
We describe a novel technique for probing the statistical properties of cosmic magnetic fields based on radio polarimetry data. Second-order magnetic field statistics like the power spectrum cannot always distinguish between magnetic fields with essentially different spatial structure. Synchrotron polarimetry naturally allows certain fourth-order magnetic field statistics to be inferred from observational data, which lifts this degeneracy and can thereby help us gain a better picture of the structure of the cosmic fields and test theoretical scenarios describing magnetic turbulence. In this work we show that a fourth-order correlator of specific physical interest, the tension force spectrum, can be recovered from the polarized synchrotron emission data. We develop an estimator for this quantity based on polarized emission observations in the Faraday rotation free frequency regime. We consider two cases: a statistically isotropic field distribution, and a statistically isotropic field superimposed on a weak mean field. In both cases the tension force power spectrum is measurable; in the latter case, the magnetic power spectrum may also be obtainable. The method is exact in the idealized case of a homogeneous relativistic electron distribution that has a power-law energy spectrum with a spectral index of   p = 3  , and assumes statistical isotropy of the turbulent field. We carry out numerical tests of our method using synthetic polarized emission data generated from numerically simulated magnetic fields. We show that the method is valid, that it is not prohibitively sensitive to the value of the electron spectral index p , and that the observed tension force spectrum allows one to distinguish between e.g. a randomly tangled magnetic field (a default assumption in many studies) and a field organized in folded flux sheets or filaments.  相似文献   
997.
We have obtained 40 high-resolution circular spectropolarimetric measurements of 12 slowly pulsating B (SPB) stars, eight β Cephei stars and two Be stars with the Echelle Spectropolarimetric Device for the Observation of Stars at CFHT (ESPaDOnS) and Narval spectropolarimeters. The aim of these observations is to evaluate recent claims of a high incidence of magnetic field detections in stars of these types obtained using low-resolution spectropolarimetry by Hubrig et al. The precision achieved is generally comparable to or superior to that obtained by Hubrig et al., although our new observations are distinguished by their resolution of metallic and He line profiles, and their consequent sensitivity to magnetic fields of zero net longitudinal component. In the SPB stars, we confirm the detection of magnetic field in one star (16 Peg), but find no evidence of the presence of fields in the remaining 11. In the β Cep stars, we detect a field in  ξ1  CMa, but not in any of the remaining seven stars. Finally, neither of the two B-type emission-line stars shows any evidence of magnetic field. Based on our results, we conclude that fields are not common in SPB, β Cep and B-type emission-line stars, consistent with the general rarity of fields in the broader population of main sequence B-type stars. A relatively small, systematic underestimation of the error bars associated with the UV Focal Reducer and Low Dispersion Spectrograph for the Very Large Telescope (FORS1) longitudinal field measurements of Hubrig et al. could in large part explain the discrepancy between their results and those presented here.  相似文献   
998.
The Sunyaev–Zel'dovich (SZ) effect and the Faraday rotation from haloes are examined over a wide mass range, including gas condensation and magnetic field evolution. Contributions to the cosmic microwave background (CMB) angular power spectrum are evaluated for galaxy clusters, galaxy groups and galaxies. Smaller mass haloes are found to play a more important role than massive haloes for the B -mode polarization associated with the SZ CMB anisotropies. The B modes from the Faraday rotation dominate the secondary B modes caused by gravitational lensing at  ℓ > 3000  . Measurement of B -mode polarization in combination with the SZ power spectrum can potentially provide important constraints on intracluster magnetic field and gas evolution at early epochs.  相似文献   
999.
We suggest an explanation for the twin kilohertz quasi-periodic oscillations (kHz QPOs) in low-mass X-ray binaries (LMXBs) based on magnetohydrodynamics (MHD) oscillation modes in neutron star magnetospheres. Including the effect of the neutron star spin, we derive several MHD wave modes by solving the dispersion equations, and propose that the coupling of the two resonant MHD modes may lead to the twin kHz QPOs. This model naturally relates the upper, lower kHz QPO frequencies with the spin frequencies of the neutron stars, and can well account for the measured data of six LMXBs.  相似文献   
1000.
This paper presents a catalogue and the method of determining averaged quadratic effective magnetic fields  〈 B e〉  for 1212 main-sequence and giant stars, and 11 white dwarf stars. The catalogue includes stars that are members of several open clusters. We have compiled measurements of the longitudinal magnetic field for those stars, which were scattered in the existing literature. A new parameter, magnetization (MA), has been defined, and we present values of MA for stars of various spectral classes. Our sample includes a subset of 610 chemically peculiar early-type stars. We confirm the conclusion of our previous study that the number distribution of all chemically peculiar stars versus the averaged magnetic field strength is described by a decreasing exponential function. Relations of this type also hold for stars of all the analysed subclasses of chemical peculiarity. Magnetization tends to correlate with the effective temperature only at high MA, for He-weak and He-rich stars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号