首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   735篇
  免费   121篇
  国内免费   351篇
地球物理   111篇
地质学   1016篇
海洋学   41篇
天文学   1篇
综合类   16篇
自然地理   22篇
  2024年   4篇
  2023年   12篇
  2022年   28篇
  2021年   33篇
  2020年   24篇
  2019年   38篇
  2018年   37篇
  2017年   33篇
  2016年   33篇
  2015年   31篇
  2014年   48篇
  2013年   61篇
  2012年   49篇
  2011年   42篇
  2010年   44篇
  2009年   53篇
  2008年   50篇
  2007年   66篇
  2006年   60篇
  2005年   56篇
  2004年   54篇
  2003年   49篇
  2002年   50篇
  2001年   28篇
  2000年   22篇
  1999年   38篇
  1998年   19篇
  1997年   23篇
  1996年   16篇
  1995年   13篇
  1994年   11篇
  1993年   22篇
  1992年   12篇
  1991年   5篇
  1990年   12篇
  1989年   7篇
  1988年   7篇
  1987年   8篇
  1986年   4篇
  1985年   3篇
  1977年   1篇
  1954年   1篇
排序方式: 共有1207条查询结果,搜索用时 21 毫秒
51.
We present the results of a detailed petrological study of a sparsely phyric basalt (MAPCO CH98-DR11) dredged along the Mid-Atlantic Ridge (30°41′N). The sample contains microphenocrysts of olivine that display four different rapid-growth morphologies. Comparison of these morphologies with those obtained in dynamic crystallization experiments allows us to constrain the thermal history of the sample. The dendritic morphology (swallowtail, chain and lattice olivine) is directly related to the final quenching during magma–seawater interaction. In contrast, the three other morphologies, namely the complex polyhedral crystal, the closed hopper and the complex swallowtail morphology result from several cycles of cooling–heating (corresponding to a maximum degree of undercooling of 20–25°C) during crystal growth. These thermal variations occurred before eruption and are interpreted to be the result of turbulent convection in a small magmatic body beneath the ridge. The results suggest that the Mid-Atlantic Ridge is underlain by a mush zone that releases batches of liquid during tectonic segregation. Aphyric basalts are emitted during eruptions controlled by the tectonic activity, whereas phyric basalts correspond to small fractions of magma from the mush zone mobilized by reinjections of primitive magmas.  相似文献   
52.
Large volumes of mare basalts are present on the surface of the moon, located preferentially in large impact basins. Mechanisms relating impact basins and mare basalt eruptions have previously been suggested: lunar impacts removed low-density material that may have inhibited eruption, and created cracks for fluid flow [Icarus 139 (1999) 246], and lunar basins have long been described as catchments for magma (e.g., [Rev. Geophys. Space Phys. 18 (1980) 107] and references therein). We present a new model for melt creation under near side lunar basins that is triggered by the impacts themselves. Magma can be produced in two stages. First, crater excavation depressurizes underlying material such that it may melt in-situ. Second, the cratered lithosphere rises isostatically, warping isotherms at the lithosphere-asthenosphere boundary which may initiate convection, in which adiabatic melting can occur. The first stage produces by far the largest volume of melt, but convective melting can continue for up to 350 Ma. We propose that giant impacts account for a large portion of the volume and longevity of mare basalt volcanism, as well as for several compositional groups, including high alumina, high titanium, KREEP-rich, and picritic magmas.  相似文献   
53.
峨嵋玄武岩同生流体包裹体在800℃爆裂后,2.0g/L NH4Cl溶液提取流体中Pt、Pd,C-410树脂富集-电感耦合等离子体质谱测定,方法相对误差小于25%。激光拉曼光谱与四级质谱测定包裹体的气液成分结果表明:流体中存在一定量的有机组分,这对Pt、Pd以有机螯合态形式进入流体提供了可能。  相似文献   
54.
云南会泽超大型铅锌矿床成因研究中的几个问题   总被引:6,自引:0,他引:6  
位于川-滇-黔铅锌多金属成矿域中南部云南会泽超大型铅锌矿床可能是一种新的铅锌矿床类型,该类铅锌矿床明显特征是规模大、品位富、伴生有用元素多,暗示其成矿环境较为特殊。从成矿时代、成矿物质来源、成矿流体来源与演化,以及峨眉山玄武岩与成矿的关系等方面分析了会泽超大型铅锌矿床的研究进展及国内外研究现状,认为矿床成矿时代与西南大面积峨眉山玄武岩成矿时代相近,成矿物质和成矿流体具有“多源性”,成矿流体存在均一化过程,区域大规模流体运移在该区铅锌成矿过程中具有重要意义,峨眉山玄武岩岩浆活动与铅锌成矿具有密切的成因联系,矿床可能为“均一化成矿流体贯入成矿”的产物。  相似文献   
55.
Compositional studies on different forms of magnetite, ulvospinel, ilmenite and hematite mineral phases occurring in 37 lava flows and 6 dykes of the Mandla lobe are presented in this paper. Ilmenite (0001) in equilibrium with titanomanetite show high values of temperature of equilibration, ranging from 1172–974°C, for high alumina quartz normative tholeiitic lava flows of Chemical Type - A; 1129–1229°C for low alumina quartz normative tholeiitic lava flows of Chemical Type - B; 1283–1124°C for tholeiitic lava flows of Chemical Type - F and 1243°C and 99O°C for two diopside olivine normative tholeiite flows of Chemical Type D. High olivine normative flows of Chemical Type - G and H show 1095°C and 1092°C respectively. Whereas, high hypersthene normative tholeiite flow of Chemical me C shows temperature of 1187°C. Data plots disposition over iron-titanium oxide equilibration temperature vs – logfo2, diagram for Mandla lava flows and other parts of the Deccan (Igatpuri, Mahabaleshwer, Nagpur and Sagar areas) revealed that tholeiitic (evolved) basalt of the eastern Deccan volcanic province formed at high temperatures whereas, picritic (primitive) lavas of Igatpuri and tholeiitic basalt of Mahabaleshwar areas were formed at low temperatures. Mahabaleshwer basalts follow FMQ (fayalite-magnetite-quartz) buffer curve but, plots of the Mandla basalts lie above this curve indicating higher temperatures of crystallisation of ilmenite-titanomagnetite than that of the lava flows from other parts of Deccan 'Raps. The eastern Deccan Traps are most evolved types of lava as characterised by its low Mg-number and Ni content whereas, Igatpuri lava flows are picritic (primitive), having high Mg-number and Ni contents. Temperature vs FeO + Fe2O3 / FeO + Fe2O3 + MgO ratio data plots for Mandla and other Deccan lava flows and liquidus data for Hawaiian tholeiites, indicated that Igatpuri basalts lie parallel to the liquidus line of Hawaiian tholeiite but at lower temperatures. Large data plots of Mandla lava flows lie along the liquidus line of the Hawaiian lava. The highly vesicular nature of compound lava flows having large amount of volatile is responsible for low temperature values whereas, lava flows represented by high temperatures show high modal values of glass and opaque minerals.  相似文献   
56.
A complete dismembered sequence of ophiolite is well exposed in the south Andaman region that mainly comprises ultramafic cumulates, serpentinite mafic plutonic and dyke rocks, pillow lava, radiolarian chert, and plagiogranite. Pillow lavas of basaltic composition occupy a major part of the Andaman ophiolite suite (AOS). These basalts are well exposed all along the east coast of southern part of the south AOS. Although these basalts are altered due to low-grade metamorphism and late hydrothermal processes, their igneous textures are still preserved. These basalts are mostly either aphyric or phyric in nature. Aphyric type exhibits intersertal or variolitic textures, whereas phyric variety shows porphyritic or sub-ophitic textures. The content of alkalies and silica classify these basalts as sub-alkaline basalts and alkaline basalts. A few samples show basaltic andesite, trachy-basalt, or basanitic chemical composition. High-field strength element (HFSE) geochemistry suggests that studied basalt samples are probably derived from similar parental magmas. Al2O3/TiO2 and CaO/TiO2 ratios classify these basalts as high-Ti type basalt. On the basis of these ratios and many discriminant functions and diagrams, it is suggested that the studied basalts, associated with Andaman ophiolite suite, were derived from magma similar to N-MORB and emplaced in the mid-oceanic ridge tectonic setting.  相似文献   
57.
The Kundal area of Malani Igneous Suite consists of volcano-plutonic rocks. Basalt flows and gabbro intrusives are associated with rhyolite. Both the basic rocks consist of similar mineralogy of plagioclase, clinopyroxene as essential and Fe-Ti oxides as accessories. Basalt displays sub-ophitic and glomeroporphyritic textures whereas gabbro exhibits sub-ophitic, porphyritic and intergrannular textures. They show comparable chemistry and are enriched in Fe, Ti and incompatible elements as compared to MORB/CFB. Samples are enriched in LREE and slightly depleted HREE patterns with least significant positive Eu anomalies. Petrographical study and petrogenetic modeling of [Mg]-[Fe], trace and REE suggest cogenetic origin of these basic rocks and they probably derived from Fe-enriched source with higher Fe/Mg ratio than primitive mantle source. Thus, it is concluded that the basic volcano-plutonic rocks of Kundal area are the result of a low to moderate degree (< 30%) partial melting of source similar to picrite/komatiitic composition. Within plate, anorogenic setting for the basic rocks of Kundal area is suggested, which is in conformity with the similar setting for Malani Igneous Suite.  相似文献   
58.
Sr and Nd isotopic compositions of one trachyte, eight phonolites and five basalts have been measured. The isotopic characteristics of the trachyte can be explained by a combined assimilation–fractional crystallization process within an upper crustal magmatic chamber. Some phonolites display isotopic signatures identical to basalts, suggesting that they have been protected against any crustal assimilation during their formation. Some others have low Sr contents, whereas they are enriched in radiogenic Sr (0.70451<87Sr/86Sri<0.71192), and display basaltic 143Nd/144Nd ratios. Both observations could be explained by very strong alkali feldspar fractionation and by subsequent very low assimilation of surrounding rocks (between 0.3 and 4%) during intrusion. To cite this article: J.-M. Dautria et al., C. R. Geoscience 336 (2004).  相似文献   
59.
60.
Hidehisa  Mashima 《Island Arc》2005,14(2):165-177
Abstract   The major element and compatible trace element compositions of the northwest Kyushu basalts (NWKBs) collected from Saga-Futagoyama were analyzed to examine the petrogenesis of these basalts. Although nepheline-normative alkaline basalts are not found in the basalts from Saga-Futagoyama, the Saga-Futagoyama basalts almost cover the major element variations of NWKBs. The basalts can be chemically divided into two groups: an Fe-poor group (IPG) and an Fe-rich group (IRG). The compositional variation of IPG basalts is essentially controlled by the partial melting of the source as suggested by the following: (i) bulk rock MgO, FeO and NiO compositions indicate that some IPG samples were equilibrated with mantle olivine; and (ii) correlations between Al2O3, CaO and MgO are consistent with those of experimental partial melts of peridotites. The inconsistent behaviors of the elements compatible with clinopyroxene (Cpx), such as V (Sc and Cu), preclude the significant role of the fractional crystallization of Cpx and spinel in IPG variation. IPG basalts have low Al and high Fe concentrations compared to the products of melting experiments involving peridotites and pyroxenites, suggesting that the IPG source would have a lithology and bulk rock composition different from those of typical peridotites and pyroxenites. IRG basalts have negative correlations between Fe2O3* and MgO, and between V and Fe2O3*/MgO, indicating that IRG basalts would have fractionated Cpx. However, the anomalously Fe-rich feature of IRG basalts compared with NWKBs collected from other areas suggests that the role of Cpx fractionation in NWKBs is minor. Relatively low melting temperatures would have principally caused the large chemical variation of NWKBs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号