首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   950篇
  免费   116篇
  国内免费   184篇
测绘学   41篇
大气科学   373篇
地球物理   190篇
地质学   92篇
海洋学   56篇
天文学   418篇
综合类   26篇
自然地理   54篇
  2024年   4篇
  2023年   4篇
  2022年   14篇
  2021年   14篇
  2020年   10篇
  2019年   13篇
  2018年   18篇
  2017年   12篇
  2016年   10篇
  2015年   14篇
  2014年   23篇
  2013年   42篇
  2012年   17篇
  2011年   25篇
  2010年   35篇
  2009年   76篇
  2008年   87篇
  2007年   104篇
  2006年   109篇
  2005年   79篇
  2004年   65篇
  2003年   56篇
  2002年   53篇
  2001年   43篇
  2000年   59篇
  1999年   41篇
  1998年   48篇
  1997年   30篇
  1996年   28篇
  1995年   19篇
  1994年   14篇
  1993年   15篇
  1992年   14篇
  1991年   8篇
  1990年   7篇
  1989年   11篇
  1988年   8篇
  1987年   1篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有1250条查询结果,搜索用时 15 毫秒
141.
The solar system, as we know it today, is about 4.5 billion years old. It is widely believed that it was essentially completed 100 million years after the formation of the Sun, which itself took less than 1 million years, although the exact chronology remains highly uncertain. For instance: which, of the giant planets or the terrestrial planets, formed first, and how? How did they acquire their mass? What was the early evolution of the “primitive solar nebula” (solar nebula for short)? What is its relation with the circumstellar disks that are ubiquitous around young low-mass stars today? Is it possible to define a “time zero” (t 0), the epoch of the formation of the solar system? Is the solar system exceptional or common? This astronomical chapter focuses on the early stages, which determine in large part the subsequent evolution of the proto-solar system. This evolution is logarithmic, being very fast initially, then gradually slowing down. The chapter is thus divided in three parts: (1) The first million years: the stellar era. The dominant phase is the formation of the Sun in a stellar cluster, via accretion of material from a circumstellar disk, itself fed by a progressively vanishing circumstellar envelope. (2) The first 10 million years: the disk era. The dominant phase is the evolution and progressive disappearance of circumstellar disks around evolved young stars; planets will start to form at this stage. Important constraints on the solar nebula and on planet formation are drawn from the most primitive objects in the solar system, i.e., meteorites. (3) The first 100 million years: the “telluric” era. This phase is dominated by terrestrial (rocky) planet formation and differentiation, and the appearance of oceans and atmospheres.  相似文献   
142.
During the past 4 Mars years, Mars Orbiter Camera imaging capabilities have been used to document occurrence of seasonal patches of frost at latitudes as low as 33° S, and even 24° S. Monitoring reveals bright patches on pole-facing slopes; these appear in early southern winter and disappear in mid winter. The frost forms annually. Thermal Emission Spectrometer and daytime Thermal Emission Imaging System observations show surface temperatures on and near pole facing slopes reach the condensation temperature of CO2, indicating the patches consist of carbon dioxide rather than water frost. For several months, temperatures on pole-facing crater walls are so low that even carbon dioxide condenses on them, although the slopes are illuminated by the Sun every day. Thermal model calculations show slopes accumulate a several centimeter thick layer of CO2 frost. The frost becomes visible only months after it has begun to form, and has an orientational preference which is due to illumination bias at the time of observation. H2O condenses at higher temperatures and water frost must therefore also be present. Potential opportunities to observe seasonal water frost at low latitudes are also described.  相似文献   
143.
Using Mars Global Surveyor Mars Orbiter Camera daily global maps, cloud areas have been measured daily for water ice clouds associated with the topography of the major volcanoes Olympus Mons, Ascraeus Mons, Pavonis Mons, Arsia Mons, Elysium Mons, and Alba Patera. This study expands on that of Benson et al. [Benson, J.L., Bonev, B.P., James, P.B., Shan, K.J., Cantor, B.A., Caplinger, M.A., 2003. Icarus 165, 34-52] by continuing their cloud area measurements of the Tharsis volcanoes, Olympus Mons and Alba Patera for an additional martian year (August 2001-May 2003) and by also including Elysium Mons measurements from March 1999 through May 2003. The seasonal trends in cloud activity established by Benson et al. [Benson, J.L., Bonev, B.P., James, P.B., Shan, K.J., Cantor, B.A., Caplinger, M.A., 2003. Icarus 165, 34-52] for the five volcanoes studied earlier are corroborated here with an additional year of coverage. For volcanoes other than Arsia Mons, interannual variations that could be associated with the large 2001 planet encircling dust storm are minimal. At Arsia Mons, where cloud activity was continuous in the first two years, clouds disappeared totally for ∼85° of LS (LS=188°-275°) due to the dust storm. Elysium Mons cloud activity is similar to that of Olympus Mons, however the peak in cloud area is near LS=130° rather than near LS=100°.  相似文献   
144.
M.J. Klein 《Icarus》2006,184(1):170-180
We present a self-consistent, 36-year record of the disk-averaged radio brightness of Uranus at wavelengths near 3.5 cm. It covers nearly half a uranian year, and includes both equatorial and polar viewing geometries (corresponding to equinox and solstice, respectively). We find large (greater than 30 K) changes over this time span. In agreement with analyses made of more limited microwave data sets, our observations suggest the changes are not caused by geometric effects alone, and that temporal variations may exist in the deep uranian troposphere down to pressures of tens of bars. Our data also support an earlier suggestion that a rapid, planetary-scale change may have occurred in late 1993 and early 1994. The seasonal record presented here will be useful for constraining dynamical models of the deep atmosphere, and for interpreting observations made during Uranus' 2007 equinox passage. As part of a multi-wavelength observing campaign for this event, the Goldstone-Apple Valley Radio Telescope (GAVRT) project will continue to make frequent, single-dish observations near 3.5 cm.  相似文献   
145.
The zonal mean ammonia abundance on Jupiter between the 400- and 500-mbar pressure levels is inferred as a function of latitude from Cassini Composite Infrared Spectrometer data. Near the Great Red Spot, the ammonia abundance is mapped as a function of latitude and longitude. The Equatorial Zone is rich in ammonia, with a relative humidity near unity. The North and South Equatorial Belts are depleted relative to the Equatorial Zone by an order of magnitude. The Great Red Spot shows a local maximum in the ammonia abundance. Ammonia abundance is highly correlated with temperature perturbations at the same altitude. Under the assumption that anomalies in ammonia and temperature are both perturbed from equilibrium by vertical motion, we find that the adjustment time constant for ammonia equilibration is about one third of the radiative time constant.  相似文献   
146.
1 IntroductionAtlatitudesaround 80°Nandinthemesosphere /lowerthermosphere (MLT) ,therehavebeenfewmeasurementsofneutraldynamics.ArequirementwasseenforlongtermcontinualmonitoringandaVHFmeteorradarwasidentifiedasbeingamostsuitableinstrument.RadarsliketheEISCA…  相似文献   
147.
Hydrogen peroxide (H2O2) has been suggested as a possible oxidizer of the martian surface. Photochemical models predict a mean column density in the range of 1015-1016 cm−2. However, a stringent upper limit of the H2O2 abundance on Mars (9×1014 cm−2) was derived in February 2001 from ground-based infrared spectroscopy, at a time corresponding to a maximum water vapor abundance in the northern summer (30 pr. μm, Ls=112°). Here we report the detection of H2O2 on Mars in June 2003, and its mapping over the martian disk using the same technique, during the southern spring (Ls=206°) when the global water vapor abundance was ∼10 pr. μm. The spatial distribution of H2O2 shows a maximum in the morning around the sub-solar latitude. The mean H2O2 column density (6×1015 cm−2) is significantly greater than our previous upper limit, pointing to seasonal variations. Our new result is globally consistent with the predictions of photochemical models, and also with submillimeter ground-based measurements obtained in September 2003 (Ls=254°), averaged over the martian disk (Clancy et al., 2004, Icarus 168, 116-121).  相似文献   
148.
Today, most land surface process models have prescribed seasonal change of vegetation with regard to the exchange processes between land and the atmosphere. However, in order to consider the real interaction between vegetation and atmosphere and represent it best in a climate model, the vegetation growth process should be included. In other words, “life” should be brought into climate models. In this study, we have coupled the physical and biological components of AVIM (Atmosphere–Vegetation Interaction Model), a land surface model including plant ecophysiological processes, into the IAP/LASG L9 R15 GOALS GCM. To exhibit terrestrial vegetation information, the vegetation is given a high resolution of 1.5° by 1.5° to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere, which is 7.5° longitude and 4.5° latitude. The simulated monthly mean surface air temperature and precipitation is close to the observations. The monthly mean Leaf Area Index (LAI) is consistent with the observed data. The global annual mean net primary production (NPP) simulation is also reasonable. The coupled model is stable, providing a good platform for research on two-way interaction between land and atmosphere, and the global terrestrial ecosystem carbon cycle.  相似文献   
149.
Optimal orbits for Mars atmosphere remote sensing   总被引:1,自引:0,他引:1  
Most of the spacecrafts currently around Mars (or planned to reach Mars in the near future) use Sun-synchronous or near-polar orbits. Such orbits offer a very poor sampling of the diurnal cycle. Yet, sampling the diurnal cycle is of key importance to study Mars meteorology and climate. A comprehensive remote sensing data set should have been obtained by the end of the MRO mission, launched in 2005. For later windows, time-varying phenomena should be given the highest priority for remote sensing investigations. We present possible orbits for such missions which provide a rich spatial and temporal sampling with a relatively short repeat cycle (50 sols). After computation and determination of these orbits, said “optimal orbits”, we illustrate our results by tables of sampling and comparison with other orbits.  相似文献   
150.
Spatial and seasonal variations in CO2 and CH4 concentrations in streamwater and adjacent soils were studied at three sites on Brocky Burn, a headwater stream draining a peatland catchment in upland Britain. Concentrations of both gases in the soil atmosphere were significantly higher in peat and riparian soils than in mineral soils. Peat and riparian soil CO2 concentrations varied seasonally, showing a positive correlation with air and soil temperature. Streamwater CO2 concentrations at the upper sampling site, which mostly drained deep peats, varied from 2·8 to 9·8 mg l?1 (2·5 to 11·9 times atmospheric saturation) and decreased markedly downstream. Temperature‐related seasonal variations in peat and riparian soil CO2 were reflected in the stream at the upper site, where 77% of biweekly variation was explained by an autoregressive model based on: (i) a negative log‐linear relationship with stream flow; (ii) a positive linear relationship with soil CO2 concentrations in the shallow riparian wells; and (iii) a negative linear relationship with soil CO2 concentrations in the shallow peat wells, with a significant 2‐week lag term. These relationships changed markedly downstream, with an apparent decrease in the soil–stream linkage and a switch to a positive relationship between stream flow and stream CO2. Streamwater CH4 concentrations also declined sharply downstream, but were much lower (<0·01 to 0·12 mg l?1) than those of CO2 and showed no seasonal variation, nor any relationship with soil atmospheric CH4 concentrations. However, stream CH4 was significantly correlated with stream flow at the upper site, which explained 57% of biweekly variations in dissolved concentrations. We conclude that stream CO2 can be a useful integrative measure of whole catchment respiration, but only at sites where the soil–stream linkage is strong. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号