首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   71篇
  国内免费   38篇
测绘学   3篇
地球物理   109篇
地质学   153篇
海洋学   9篇
天文学   1篇
综合类   13篇
自然地理   13篇
  2024年   1篇
  2023年   4篇
  2022年   5篇
  2021年   13篇
  2020年   22篇
  2019年   20篇
  2018年   7篇
  2017年   16篇
  2016年   13篇
  2015年   15篇
  2014年   10篇
  2013年   12篇
  2012年   14篇
  2011年   10篇
  2010年   7篇
  2009年   13篇
  2008年   14篇
  2007年   15篇
  2006年   9篇
  2005年   8篇
  2004年   11篇
  2003年   17篇
  2002年   7篇
  2001年   7篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
排序方式: 共有301条查询结果,搜索用时 15 毫秒
91.
The quantitative analysis of morphologic characteristics of bedrock fault surface is a useful approach to study faulting history and identify paleo-earthquake. It is an effective complement to trenching technique, specially to identifying paleo-earthquakes in a bedrock area where the trenching technique cannot be applied. This paper focuses on the Luoyunshan piedmont fault, which is an active normal fault extending along the eastern boundary of the Shanxi Graben, China. There are a lot of fault scarps along the fault zone, which supply plentiful samples to be selected to our research, that is, to study faulting history and identify paleo-earthquakes in bedrock area by the quantitative analysis of morphologic characteristics of fault surfaces. In this paper, we calculate the 2D fractal dimension of two bedrock fault surfaces on the Luoyunshan piedmont fault in the Shanxi Graben, China using the isotropic empirical variance function, which is a popular method in fractal geometry. Results indicate that the fractal dimension varies systematically with height above the base of the fault surface exposures, indicating segmentation of the fault surface morphology. The 2D fractal dimension on a fault surface shows a ‘stair-like’ vertical segmentation, which is consistent with the weathering band and suggests that those fault surfaces are outcropped due to periodic faulting earthquakes. However, compared to the results of gneiss obtained by the former researchers, the characteristic fractal value of limestone shows an opposite evolution trend. 1)The paleo-earthquake study of the bedrock fault surface can be used as a supplementary method to study the activity history of faults in specific geomorphological regions. It can be used to fill the gaps in the exploration of the paleo-earthquake method in the bedrock area, and then broaden the study of active faults in space and scope. The quantitative analysis of bedrock fault surface morphology is an effective method to study faulting history and identify paleo-earthquake. The quantitative feature analysis method of the bedrock fault surface is a cost-effective method for the study of paleo-earthquakes in the bedrock fault surface. The number of weathered bands and band height can be identified by the segment number and segment height of the characteristic fractal dimension, and then the paleoearthquake events and the co-seismic displacement can be determined; 2)The exposure of the fault surface of the Luoyunshan bedrock is affected and controlled by both fault activity and erosion. A strong fault activity(ruptured earthquake)forms a segment of fault surface which is equivalent to the vertical co-seismic displacement of the earthquake. After the segment is cropped out, it suffers from the same effect of weathering and erosion, and thus this segment has approximately the same fractal dimension. Multiple severe fault activities(ruptured earthquake)form multiple fault surface topography. The long-term erosion under weak hydrodynamic conditions at the base of the fault cliff between two adjacent fault activities(intermittent period)will form a gradual slow-connect region where the fractal dimension gradually changes with the height of the fault surface. Based on the segmentation of quantitative morphology of the two fault surfaces on the Luoyunshan piedmont fault, we identified four earthquake events. Two sets of co-seismic displacement of about 3m and 1m on the fault are obtained; 3)The relationship between the fault surface morphology parameters and the time is described as follows:The fractal dimension of the limestone area decreases with the increase of the exposure time, which reflects the gradual smoothing characteristics after exposed. The phenomenon is opposite to the evolution of the geological features of gneiss faults acquired by the predecessors on the Huoshan piedmont fault; 4)Lithology plays an important role in morphology evolution of fault surface and the two opposite evolution trends of the characteristic fractal value on limestone and gneiss show that the weathering mechanism of limestone is different from that of the gneiss.  相似文献   
92.
A better understanding of bedrock incision mechanisms and processes is essential to the study of long‐term landscape evolution. Yet, little is known about flow dynamics in bedrock rivers, limiting our ability to make realistic predictions of local bedrock incision rates. A recent investigation of flow through bedrock canyons of the Fraser River revealed that plunging flows, defined by the downward‐directed movement of near surface flow toward the channel bed, occur in channels that have low width‐to‐depth ratios. Plunging flows occur into deep scour pools, which are often coincident with lateral constrictions and channel spanning submerged ridges (sills). A phenomenological investigation was undertaken to reproduce the flow fields observed in the Fraser canyons and to explore morphological controls on the occurrence and relative strength of plunging flow in bedrock canyons. Our observations show that the plunging flow structure can be produced along a scour pool entrance slope by accelerating the flow at the canyon entrance either over submerged sills or through lateral constrictions. Plunging flow appears to be a function of convective deceleration into a scour pool which can be enhanced by sill height, the amount of the channel width that is constricted, pool entrance slope, discharge, and a reduction in channel width‐to‐depth ratio. Plunging flow greatly enhances the potential for incision to occur along the channel bed and is an extreme departure from the assumptions of steady, uniform flow in bedrock incision models, highlighting the need for improved formulations that account for fluid flow. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
93.
The large river systems are the major transfer of continental masses to the ocean and basin, playing significant roles in global geochemical cycles. The Tibetan plateau is the birthplace of many huge rivers flowing through eastern and southern Asia, in which the fluvial deposits kept not only closely relate to the geological evolution information from the source areas, but also record the river itself building process. The low-temperature thermochronology method of detrital minerals (zircon and apatite, etc.) can be used to constrain the river's source areas, establishing its source-sink system. It can also combine regional tectonic deformation analysis to determine the potential source region of the river and the formation time of the plateau geomorphology, which is a focused issue in recent years. In this study, we have summarized the research results from the large rivers in the Tibetan plateau in recent years, suggesting that the low-temperature thermochronology analysis of the detrital minerals should be focused on the river's key locations in the upstream, midstream and downstream, respectively, combining the small tributaries analysis which can give a more detailed thermal evolution history in the whole drainage basin. On the conditions of the bedrock, it is shown that in the same river's different place we should use the same low-temperature thermochronology, while in different river's places we should take several low-temperature thermochronology methods (apatite and zircon, etc.)at a same position, so we get a complete time series related to the river incision. Combining the valley bedrock and detrital river minerals with the low-temperature thermalchronology on the Tibetan plateau, together with the chronology, structure analysis and other sedimentary studies, we can obtain detailed structures and river's evolution processes.  相似文献   
94.
使用胶东及邻区地震数据,对于发生在基岩出露区的18次地震的30条可靠等震线,利用最小二乘法,拟合胶东地区地震烈度衰减关系公式。与华北地区地震烈度衰减关系进行比较,发现胶东地区地震烈度衰减较慢。胶东地区地震烈度衰减关系的建立,可以辅助制定相关应急预案和震后快速评估。  相似文献   
95.
Mountainous river basins are one of the main sources of sediment. Over long time scales, sediment production is sustained by the persistent dissection of river basins, which is promoted by tectonic activity. The response or adjustment of rivers to forcing factors such as uplift is based on the concept of the graded river and a feedback mechanism between the incision and uplift. Although the development of graded rivers under natural circumstances has been discussed for a long time, knowledge about the transition of river basins under heterogeneous uplift is not enough. To understand the development of a river basin with a non‐uniform uplift rate, two simple cases are examined: landward and seaward tilting uplift, where the uplift rate varies linearly in space. For our study, laboratory experiments were conducted and the results were compared with those of natural river basins; two river basins in Yakushima Island were selected for this purpose. In both the laboratory and Yakushima, the longitudinal profile of the river basin under landward‐tilting uplift has a convex‐up zone and a specific knickpoint is formed at the upstream end of this zone. This knickpoint is inactive with respect to migration and incision owing to the insufficient cumulative uplift to the equilibrium state. It was also observed in both the experimental and natural cases that the profile of the river basin under seaward tilting is unlikely to have such a convex‐up zone in the long term, and will instead have a smooth concave profile. Therefore, the spatiotemporal pattern of dissection differs depending on the type of tilting uplift, which suggests that sediment production also varies in time and space according to the type of uplift.  相似文献   
96.
The bedrock controls on catchment mixing, storage, and release have been actively studied in recent years. However, it has been difficult to find neighbouring catchments with sufficiently different and clean expressions of geology to do comparative analysis. Here, we present new data for 16 nested catchments (0.45 to 410 km2) in the Alzette River basin (Luxembourg) that span a range of clean and mixed expressions of schists, phyllites, sandstones, and quartzites to quantify the relationships between bedrock permeability and metrics of water storage and release. We examined 9 years' worth of precipitation and discharge data, and 6 years of fortnightly stable isotope data in streamflow, to explore how bedrock permeability controls (a) streamflow regime metrics, (b) catchment storage, and (c) isotope response and catchment mean transit time (MTT). We used annual and winter precipitation–run‐off ratios, as well as average summer and winter precipitation–run‐off ratios to characterise the streamflow regime in our 16 study catchments. Catchment storage was then used as a metric for catchment comparison. Water mixing potential of 11 catchments was quantified via the standard deviation in streamflow δD (σδD) and the amplitude ratio (AS/AP) of annual cycles of δ18O in streamflow and precipitation. Catchment MTT values were estimated via both stable isotope signature damping and hydraulic turnover calculations. In our 16 nested catchments, the variance in ratios of summer versus winter average run‐off was best explained by bedrock permeability. Whereas active storage (defined here as a measure of the observed maximum interannual variability in catchment storage) ranged from 107 to 373 mm, total catchment storage (defined as the maximum catchment storage connected to the stream network) extended up to ~1700 mm (±200 mm). Catchment bedrock permeability was strongly correlated with mixing proxies of σδD in streamflow and δ18O AS/AP ratios. Catchment MTT values ranged from 0.5 to 2 years, based on stable isotope signature damping, and from 0.5 to 10 years, based on hydraulic turnover.  相似文献   
97.
Understanding the extent to which local factors, including bedrock and structure, govern catchment denudation in mountainous environments as opposed to broader climate or tectonic patterns provides insight into how landscapes evolve as sediment is generated and transported through them, and whether they have approached steady-state equilibrium. We measured beryllium-10 (10Be) concentrations in 21 sediment samples from glaciated footwall and hanging wall catchments, including a set of nested catchments, and 12 bedrock samples in the Puga and Tso Morari half-grabens located in the high-elevation, arid Zanskar region of northern India. In the Puga half-graben where catchments are underlain by quartzo-feldspathic gneissic bedrock, bedrock along catchment divides is eroding very slowly, about 5 m/Ma, due to extreme aridity and 10Be concentrations in catchment sediments are the highest (~60–90 × 105 atoms/g SiO2) as colluvium accumulates on hillslopes, decoupled from their ephemeral streams. At Puga, 10Be concentrations and the average erosion rates of a set of six nested catchments demonstrate that catchment denudation is transport-limited as sediment stagnates on lower slopes before reaching the catchment outlet. In the Tso Morari half-graben, gneissic bedrock is also eroding very slowly but 10Be concentrations in sediments in catchments underlain by low grade meta-sedimentary rocks, are significantly lower (~10–35 × 105 atoms/g SiO2). In these arid, high-elevation environments, 10Be concentrations in catchment sediments have more to do with bedrock weathering and transport times than steady-state denudation rates. © 2020 John Wiley & Sons, Ltd.  相似文献   
98.
Flow dynamics in a bedrock-influenced river system, the Sabie River, South Africa, have been found to be significantly different from those in temperate alluvial systems. The lack of lateral water connectivity leads to multiple bedrock distributaries with varying water surface elevations across a cross-section. Distributary activation is dependent on upstream breaching of bedrock barriers between distributaries by rising discharge. Where measurement of individual stage–discharge relationships in each distributary was not possible, a ‘Multiple Stage’ model was developed to predict hydraulic conditions in each distributary, using a single measured rating curve and knowledge of individual distributary water surface elevations at a low flow. Use of the ‘Multiple Stage’ model has enabled realistic prediction of channel geometry and hydraulic variables, that accounts for the different stages found in bedrock-influenced sections, yet is not prohibitively data intensive. Predicted ‘Multiple Stage’ results for maximum depth and velocity demonstrate the vast improvement on modelling flow dynamics, when compared to the conventional assumption of a single stage representing the whole cross-section. © 1998 John Wiley & Sons, Ltd.  相似文献   
99.
分析山区公路S324线K72 700处边坡滑坡的成因。通过工程勘察,从工程地质及水文地质两方面查出该滑坡的形成过程及产生的滑动面。从排水工程和抗滑工程等方面阐述了整治方案及施工方法,通过3年半的考验,该整治方案是成功的。为山区公路的综合治理提供了很好的借鉴。  相似文献   
100.
刘涛  李渝生  汪波 《山地学报》2005,23(3):342-347
从滑坡的地质环境入手,通过地质调研及测绘,分析曾家包包大型基岩滑坡的特征、控制因素及成因机制,并运用sama法及不平衡推理法、毕肖普法对滑坡稳定性极限平衡进行计算分析。在此基础上,对在现今应力场作用下滑坡的稳定性采用了有限元模拟,并对模拟的结果进行分析,得出在天然条件下曾家包包滑坡曾处于稳定状态,岩体中的软弱夹层经长期持续的地下水浸润软化逐渐泥化形成倾角上陡下缓的贯通性滑移面,在雨季降雨异常集中期,岩体排水不畅形成较高的空隙水压力,斜坡岩体就会沿滑移面发生顺层滑移,从而形成大型基岩滑坡。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号