首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1098篇
  免费   166篇
  国内免费   211篇
测绘学   2篇
大气科学   214篇
地球物理   247篇
地质学   597篇
海洋学   228篇
天文学   90篇
综合类   25篇
自然地理   72篇
  2024年   4篇
  2023年   19篇
  2022年   24篇
  2021年   34篇
  2020年   41篇
  2019年   24篇
  2018年   27篇
  2017年   34篇
  2016年   30篇
  2015年   32篇
  2014年   37篇
  2013年   40篇
  2012年   35篇
  2011年   48篇
  2010年   44篇
  2009年   62篇
  2008年   73篇
  2007年   67篇
  2006年   80篇
  2005年   64篇
  2004年   76篇
  2003年   58篇
  2002年   55篇
  2001年   38篇
  2000年   71篇
  1999年   59篇
  1998年   44篇
  1997年   43篇
  1996年   36篇
  1995年   23篇
  1994年   29篇
  1993年   26篇
  1992年   16篇
  1991年   4篇
  1990年   21篇
  1989年   9篇
  1988年   11篇
  1987年   9篇
  1986年   5篇
  1985年   10篇
  1984年   7篇
  1981年   1篇
  1980年   3篇
  1978年   2篇
排序方式: 共有1475条查询结果,搜索用时 992 毫秒
11.
对1999年9~10月采自北太平洋亚热带环流区的19份表层海水样品的Ra同位素分析表明。研究海域表层水中的^226Ra、^228Ra放射性比度分别介于0.67~0.92、0.08~0.30Bq/m^3之间,平均值分别为0.74、0.11Bq/m^3.^226Ra/^228Ra)A.R.活度比的变化范围为0.11~0.44,平均值为0.19.上述数值明显低于近岸海域水体的相应值,表现为典型的开阔大洋水的特征.从空间分布的特征看,研究海域Ra同位素含量与^226Ra/^228Ra)A.R.值均呈均匀分布态势.将本研究结果与历史数据进行对比后发现,本研究获得的^226Ra、^228Ra放射性比度比20世纪60~80年代得到的数据来得低,可能与水体层化作用加强导致的Ra补充量的减少以及生物生产力升高导致的Ra迁出量的增加有关.北太平洋亚热带环流区表层水中Ra同位素的时间变化与文献报道的该海域叶绿素a、硅酸盐、磷酸盐含量与初级生产力的历史变化趋势相吻合.  相似文献   
12.
Sediment samples ranging from 0.05 to 278 m below sea floor (mbsf) at a Northwest Pacific deep-water (5564 mbsl) site (ODP Leg 191, Site 1179) were analyzed for phospholipid fatty acids (PLFAs). Total PLFA concentrations decreased by a factor of three over the first meter of sediment and then decreased at a slower rate to approximately 30 mbsf. The sharp decrease over the first meter corresponds to the depth of nitrate and Mn(IV) reduction as indicated by pore water chemistry. PLFA-based cell numbers at site 1179 had a similar depth profile as that for Acridine orange direct cell counts previously made on ODP site 1149 sediments which have a similar water depth and lithology. The mole percentage of straight chain saturated PLFAs increases with depth, with a large shift between the 0.95 and 3.95 mbsf samples. PLFA stable carbon isotope ratios were determined for sediments from 0.05 to 4.53 mbsf and showed a general trend toward more depleted δ13C values with depth. Both of these observations may indicate a shift in the bacterial community with depth across the different redox zones inferred from pore water chemistry data. The PLFA 10me16:0, which has been attributed to the bacterial genera Desulfobacter in many marine sediments, showed the greatest isotopic depletion, decreasing from − 20 to − 35‰ over the first meter of sediment. Pore water chemistry suggested that sulfate reduction was absent or minimal over this same sediment interval. However, 10me16:0 has been shown to be produced by recently discovered anaerobic ammonium oxidizing (anammox) bacteria which are known chemoautotrophs. The increasing depletion in δ13C of 10me16:0 with the unusually lower concentration of ammonium and linear decrease of nitrate concentration is consistent with a scenario of anammox bacteria mediating the oxidation of ammonium via nitrite, an intermediate of nitrate reduction.  相似文献   
13.
Earth’s fastest present seafloor spreading occurs along the East Pacific Rise near 31°–32° S. Two of the major hydrothermal plume areas discovered during a 1998 multidisciplinary geophysical/hydrothermal investigation of these mid-ocean ridge axes were explored during a 1999 Alvin expedition. Both occur in recently eruptive areas where shallow collapse structures mark the neovolcanic axis. The 31° S vent area occurs in a broad linear zone of collapses and fractures coalescing into an axial summit trough. The 32° S vent area has been volcanically repaved by a more recent eruption, with non-linear collapses that have not yet coalesced. Both sites occur in highly inflated areas, near local inflation peaks, which is the best segment-scale predictor of hydrothermal activity at these superfast spreading rates (150 mm/yr).  相似文献   
14.
The speciation of dissolved iodine and the distributions of the iodine species in the deep Chesapeake Bay underwent seasonal variations in response to changes in the prevailing redox condition. In the deep water, the ratios of iodate to iodide and iodate to inorganic iodine decreased progressively from the Winter through the Summer as the deep water became more poorly oxygenated before they rebounded in the Fall when the deep water became re-oxygenated again. The composition of the surface water followed the same trend. However, in this case, the higher biological activities in the Spring and the Summer could also have enhanced the biologically mediated reduction of iodate to iodide by phytoplankton and contributed to the lower ratios found during those seasons. Superimposed on this redox cycle was a cycle of input and removal of dissolved iodine probably as a result of the interactions between the water column and the underlying sediments. Iodine was added to the Bay during the Summer when the deep water was more reducing and removed from the Bay in the Fall when the deep water became re-oxygenated. A third cycle was the inter-conversion between inorganic iodine and ‘dissolved organic iodine’, or ‘‘DOI’’. The conversion of inorganic iodine to ‘DOI’ was more prevalent in the Spring. As a result of these biogeochemical reactions in the Bay, during exchanges between the Bay and the North Atlantic, iodate-rich and ‘DOI’-poor water was imported into the Bay while iodide- and ‘DOI’-rich water was exported to the Atlantic. The export of iodide from these geochemically reactive systems along the land margins contributes to the enrichment of iodide in the surface open oceans.  相似文献   
15.
Hydrographic properties from CTD and discrete bottle sample profiles covering the Japan (East) Sea in summer, 1999, are presented in vertical sections, maps at standard depths, maps on isopycnal surfaces, and as property–property distributions. This data set covers most of the Sea with the exception of the western boundary region and northern Tatar Strait, and includes nutrients, pH, alkalinity, and chlorofluorocarbons, as well as the usual temperature, salinity, and oxygen observations.  相似文献   
16.
碳水化合物的组合合成是一项新兴技术,该技术可以在短时间内合成大量用于进行生物活性筛选的寡糖及拟糖物。液相与固相合成技术可以极大地加快药物研究与开发进程。作者针对该技术在碳水化合物合成方面的研究进展情况进行讨论。  相似文献   
17.
南海中部海区次表层NO2^——N的最大值   总被引:1,自引:0,他引:1  
杨嘉东 《台湾海峡》1992,11(2):138-145
本文根据1983年9月至1985年1月南海中部海区综合调查所获得的NO_2~--N及有关参数的观测资料,分析了该海区NO_2~--N的分布变化特征及其与环境因子的关系。结果表明,调查海区NO_2~--N含量的变化范围在0~0.54μmol/L之间,其中小于0.05μmol/L的测定值约占测定总数的82.1%,而大于0.05μmol/L测定值基本上出现在50~150m层。文中还对该海区次表层NO_2~--N最大值形成的机理作了初步探讨,指出密度跃层的终年存在、铵的氧化和浮游植物的代谢过程是调查海区次表层NO_2~--N最大值形成的主要因素。  相似文献   
18.
林峰  许清辉 《台湾海峡》1990,9(3):251-255
利用潮输沙量的计算方法,估算了闽江口入海口内3个断面所包围区域溶解态镉、铅和铜的收支平衡,从而研究了这些重金属的河口行为。  相似文献   
19.
The Wakamiko submarine crater is a small depression located in Kagoshima Bay, southwest Japan. Marine shallow‐water hydrothermal activity associated with fumarolic gas emissions at the crater sea floor (water depth 200 m) is considered to be related with magmatic activity of the Aira Caldera. During the NT05‐13 dive expedition conducted in August 2005 using remotely operated vehicle Hyper‐Dolphine (Japan Agency for Marine‐Earth Science and Technology), an active shimmering site was discovered (tentatively named the North site) at approximately 1 km from the previously known site (tentatively named the South site). Surface sediment (up to 30 cm) was cored from six localities including these active sites, and the alteration minerals and pore fluid chemistry were studied. The pore fluids of these sites showed a drastic change in chemical profile from that of seawater, even at 30 cm below the surface, which is attributed to mixing of the ascending hydrothermal component and seawater. The hydrothermal component of the North site is estimated to be derived from a hydrothermal aquifer at 230°C based on the hydrothermal end‐member composition. Occurrence of illite/smectite interstratified minerals in the North site sediment is attributed to in situ fluid–sediment interaction at a temperature around 150°C, which is in accordance with the pore fluid chemistry. In contrast, montmorillonite was identified as the dominant alteration mineral in the South site sediment. Together with the significant low potassium concentration of the hydrothermal end‐member, the abundant occurrence of low‐temperature alteration mineral suggests that the hydrothermal aquifer in the South site is not as high as 200°C. Moreover, the montmorillonite is likely to be unstable with the present pore fluid chemistry at the measured temperature (117°C). This disagreement implies unstable hydrothermal activity at the South site, in contrast to the equilibrium between the pore fluid and alteration minerals in the North site sediment. This difference may reflect the thermal and/or hydrological structure of the Wakamiko Crater hydrothermal system.  相似文献   
20.
Studies of Mesozoic granites associated with rare earth element (REE)‐rich weathered crust deposits in southernmost Jiangxi Province indicate that they have high‐K to shoshonite compositions and belong to ilmenite‐series I‐type granites. Of the studied rocks at 59–292 ppm of bulk REE content, the highest are seen in the biotite granites of Dingnan (358, 429 ppm) and mafic biotite granite of the Wuliting Granite (344 ppm) near the Dajishan tungsten mine, both areas where weathered‐crust REE deposits occur. REE‐bearing accessory minerals in these granites are mainly zircon, apatite and allanite, and REE‐fluorocarbonates are common. REE enrichment occurs in the rims of apatite crystals, and in fluorocarbonates that occur along grain boundaries of and cracks in major silicate minerals, and in fluorocarbonates that replaced altered biotite. It is therefore thought that a major part of the REE content of these granites was concentrated during deuteric activity, rather than during magmatic crystallization. The crack‐filling REE‐fluorocarbonates could subsequently have been easily leached out and deposited in weathered crust developed during a long period of exposure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号