首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2614篇
  免费   406篇
  国内免费   492篇
测绘学   208篇
大气科学   16篇
地球物理   550篇
地质学   1363篇
海洋学   90篇
天文学   1083篇
综合类   145篇
自然地理   57篇
  2024年   6篇
  2023年   25篇
  2022年   72篇
  2021年   65篇
  2020年   63篇
  2019年   85篇
  2018年   73篇
  2017年   90篇
  2016年   100篇
  2015年   93篇
  2014年   123篇
  2013年   133篇
  2012年   140篇
  2011年   126篇
  2010年   106篇
  2009年   206篇
  2008年   181篇
  2007年   215篇
  2006年   233篇
  2005年   199篇
  2004年   187篇
  2003年   191篇
  2002年   128篇
  2001年   118篇
  2000年   146篇
  1999年   95篇
  1998年   92篇
  1997年   33篇
  1996年   29篇
  1995年   40篇
  1994年   22篇
  1993年   20篇
  1992年   19篇
  1991年   11篇
  1990年   11篇
  1989年   8篇
  1988年   12篇
  1987年   6篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1979年   6篇
排序方式: 共有3512条查询结果,搜索用时 406 毫秒
991.
This paper explores the phenomenon of energy relaxation for stars in a galaxy embedded in a high-density environment that is subjected continually to perturbations reflecting the presence of other nearby galaxies and/or incoherent internal pulsations. The analysis is similar to earlier analyses of energy relaxation induced by binary encounters between nearby stars and between stars and giant molecular clouds in that the perturbations are idealized as a sum of near-random events which can be modelled as diffusion and dynamical friction. However, the analysis differs in one important respect: because the time-scale associated with these perturbations need not be short compared with the characteristic dynamical time t D for stars in the original galaxy, the diffusion process cannot be modelled as resulting from a sequence of instantaneous kicks, i.e. white noise. Instead, the diffusion is modelled as resulting from random kicks of finite duration, i.e. coloured noise, characterized by a non-zero autocorrelation time t c. A detailed analysis of coloured noise generated by sampling an Ornstein–Uhlenbeck process leads to a simple scaling in terms of t c and an effective diffusion constant D . Interpreting D and t c following early work by Chandrasekhar (the 'nearest neighbour approximation') implies that, for realistic choices of parameter values, energy relaxation associated with an external environment and/or internal pulsations could be important on times short compared with the age of the Universe.  相似文献   
992.
We present H α , [N  ii ] and [O  iii ] ground-based and HST archive images, VLA–A 3.6-cm continuum and H92 α emission-line data and high-resolution long-slit [N  ii ] spectra of the planetary nebula Hu 2-1. A large number of structural components are identified in the nebula: an outer bipolar and an inner shell, two pairs of collimated bipolar structures at different directions, monopolar bow-shock-like structures, and an extended equatorial structure within a halo. The formation of Hu 2-1 appears to be dominated by anisotropic mass ejection during the late-AGB stage of the progenitor and by variable, 'precessing' collimated bipolar outflows during the protoplanetary nebula and/or early planetary nebula phases. Different observational results strongly support the existence of a binary central star in Hu 2-1, among them (1) the observed point-symmetry of the bipolar lobes and inner shell, and the departures from axial symmetry of the bipolar lobes, (2) the off-centre position of the central star, (3) the detection of mass ejection towards the equatorial plane, and (4) the presence of 'precessing' collimated outflows. In addition, (5) an analysis of the kinematics shows that the systemic velocity of the bipolar outflows does not coincide with the systemic velocity of the bipolar shell. We propose that this velocity difference is a direct evidence of orbital motion of the ejection source in a binary system. From a deduced orbital velocity of ∼10 km s−1, a semimajor axis of ∼ 9–27 au and period of ∼ 25–80 yr are obtained, assuming a reasonable range of masses. These parameters are used to analyse the formation of Hu 2-1 within current scenarios of planetary nebulae with binary central stars.  相似文献   
993.
994.
995.
Three-dimensional modelling of the flow of gas and plasma in a section of the Galaxy has been carried out to study the evolution and formation of Galactic chimneys and worms. It is found that clustered supernovae located on either side of the Galactic plane are sources for the formation of well-collimated chimneys, having widths of ∼     . The thick gas disc may have a role in the collimation of chimneys. Channel maps of disc gas, obtained from the simulations, show the presence of sheet-like structures running perpendicular to the Galactic plane and resembling worms. Worms are believed to result from the break-up of the shells and supershells. However, the simulations show that although some worms correlate well with the debris of broken shells/supershells, others do not. They are cold gas that has been accelerated in the disc and rise on to the thick gas disc.  相似文献   
996.
997.
998.
To study the kinematics of O-B5 giant stars (luminosity class III), 290 non-Gould belt stars with proper motions taken from the Hipparcos catalogue are used, of which 107 have radial velocities taken from other sources. Semidefinite programming solves for the kinematical parameters and the coefficients of the velocity ellipsoid. The condition that both solutions must yield the same solar velocity is enforced. The results obtained are reasonable: solar velocity of 13.83 ± 0.17 km s−1; Oort's constants, in units of km s−1 kpc−1, A = 16.08 ± 0.72 and   B =−10.74 ± 0.65,  implying a rotational velocity of 228.0 ± 21.4 km s−1 if we take the distance to the Galactic Centre as 8.5 ± 1.1 kpc; velocity dispersions, in units of km s−1, of  σ x = 32.44 ± 5.04, σ y = 26.16 ± 2.75, σ z = 18.71 ± 2.39  with a vertex deviation of      相似文献   
999.
A revision of Stodółkiewicz's Monte Carlo code is used to simulate evolution of large star clusters. The new method treats each superstar as a single star and follows the evolution and motion of all individual stellar objects. A survey of the evolution of N -body systems influenced by the tidal field of a parent galaxy and by stellar evolution is presented. The process of energy generation is realized by means of appropriately modified versions of Spitzer's and Mikkola's formulae for the interaction cross-section between binaries and field stars and binaries themselves. The results presented are in good agreement with theoretical expectations and the results of other methods (Fokker–Planck, Monte Carlo and N -body). The initial rapid mass loss, resulting from stellar evolution of the most massive stars, causes expansion of the whole cluster and eventually leads to the disruption of less bound systems ( W 0=3). Models with larger W 0 survive this phase of evolution and then undergo core collapse and subsequent post-collapse expansion, like isolated models. The expansion phase is eventually reversed when tidal limitation becomes important. The results presented are the first major step in the direction of simulating evolution of real globular clusters by means of the Monte Carlo method.  相似文献   
1000.
A simultaneous, maximum-likelihood determination of the distance and kinematic parameters of the Pleiades is made. The results are: distance of the cluster d = 135.56 ± 0.72 pc, dispersion σd = 7.66 ± 0.80 pc; space velocity V = 25.94 ± 0.13 km/s, dispersion σv = 0.58 ± 0.09 km/s coordinates of the convergent point A = 101.95° ± 0.47°, D = −41.36° ± 0.29°.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号