首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5503篇
  免费   1132篇
  国内免费   1264篇
测绘学   527篇
大气科学   1402篇
地球物理   1639篇
地质学   2259篇
海洋学   1033篇
天文学   164篇
综合类   349篇
自然地理   526篇
  2024年   20篇
  2023年   38篇
  2022年   120篇
  2021年   133篇
  2020年   160篇
  2019年   223篇
  2018年   143篇
  2017年   229篇
  2016年   218篇
  2015年   237篇
  2014年   279篇
  2013年   342篇
  2012年   279篇
  2011年   298篇
  2010年   282篇
  2009年   365篇
  2008年   362篇
  2007年   471篇
  2006年   390篇
  2005年   363篇
  2004年   340篇
  2003年   276篇
  2002年   279篇
  2001年   227篇
  2000年   236篇
  1999年   229篇
  1998年   195篇
  1997年   193篇
  1996年   189篇
  1995年   138篇
  1994年   160篇
  1993年   110篇
  1992年   100篇
  1991年   78篇
  1990年   41篇
  1989年   44篇
  1988年   26篇
  1987年   27篇
  1986年   15篇
  1985年   8篇
  1984年   3篇
  1983年   8篇
  1982年   4篇
  1981年   3篇
  1980年   9篇
  1979年   3篇
  1978年   4篇
  1977年   1篇
  1954年   1篇
排序方式: 共有7899条查询结果,搜索用时 15 毫秒
141.
25~75℃酸性NaCl溶液中方铅矿的溶解动力学   总被引:4,自引:0,他引:4  
在25~75℃、pH=0.43~2.45的1mol/LNaCl溶液中进行了方铅矿的溶解动力学实验。发现在远平衡条件下,方铅矿的溶解速率r与氢离子活度犤H+犦呈线性关系,溶解速率方程(速率定律)为:r=k犤H+犦,即对H+而言,溶解反应为一级。其中速率常数k为2.344×10-7mol/m2·s(25℃)、1.380×10-6mol/m2·s(50℃)、7.079×10-6mol/m2·s(75℃)。溶解反应的活化能为43.54kJ/mol,方铅矿的溶解机理为表面化学反应,速率决定步骤为表面配合物的离解。  相似文献   
142.
The presence of a single Otoceras species (O.boreale), morphologically very variable, at the base of the Nekuchan Formation in Verkhoyansk, we believe, is to be obvious. Some morphological evidence leaves no doubt that two described morphs of O. boreale are s strictly corresponding sexual dimorphic pair. It is very likely that Kummel‘s idea that Canadian. O. concavum Tozer is an invalid species is truthful, considering the range of variability seen in larger Siberian and Himalayan Otoceras fauna. Just above the upper Tatarian Imtachan Formation, the six stages of ammonoid succession can be recognized within the lower part of the Nekuchan Formation in the Setorym River Section:(a) Otoceras boreale;(b) Otoceras boreale-Tompophiceras pascoei; (c) Otoceras boreale-Tompophiceras pascoei-Aldanoceras;(d)Tompophiceras pascoei-Otoceras boreale-Aldanoceras;(e) Tompophiceras morpheous-T.pascoei-Aldanoceras;(f) Tompophiceras more pheous-T.pascoei-Wordieoceras domokhotovi-Ophiceras transitorium;(g)Tompophiceras morpheous-T.pascoei, corresponding to the Otoceras boreale and Tompophiceras morpheous zones. In spite of the domination of Otocerataceae or Xenodiscaceae in both oif these zones and the presence of some Permian type conodonts in the lower part of the Otoceras boreale Zone, they seem to be early Induan in age on the basis of the following arguments:(1) in contrast to the underlying regressive type sediments of the Upper Tatarian Imtachan Formation, both the Otoceras boreale and the Tompophiceras morpheous zones of the lowermost part of the Nekuchan Formation correspond to the single transgressive cycle;(2)typical early Induan ammonoids (Ophiceras and Wordieoceras) have been recognized in the Tompophiceras morpheous zone; (3) all described ammonoid succession stages (a-g) are characterized by very gradual changes and therefore correspond to the different parts of the single zone or to the different zones of the same stage, but not to the different systems (Permian and Triassic);(4)elsewhere in the Boreal realm (Arctic Canada), the conodont index species for the base of the Triassic, Hindeodus parvus, has been reported from the Otoceras boreale Zone. A new scheme of the phylogeny for the Otocerataceae and its Induan-Olenekian offspring (Araxceratidae-Otoceratidae-Vavilovitidae n.fam.-Proptychitidae-Arctoceratidae) and Xenodiscaceae is offered.  相似文献   
143.
The nature and origin of the sediments and crust of the Murray Ridge System and northern Indus Fan are discussed. The uppermost unit consists of Middle Miocene to recent channel–levee complexes typical of submarine fans. This unit is underlain by a second unit composed of hemipelagic to pelagic sediments deposited during the drift phase after the break-up of India–Seychelles–Africa. A predrift sequence of assumed Mesozoic age occurring only as observed above basement ridges is composed of highly consolidated rocks. Different types of the acoustic basement were detected, which reflection seismic pattern, magnetic anomalies and gravity field modeling indicate to be of continental character. The continental crust is extremely thinned in the northern Indus Fan, lacking a typical block-faulted structure. The Indian continent–ocean transition is marked on single MCS profiles by sequences of seaward-dipping reflectors (SDR). In the northwestern Arabian Sea, the Indian plate margin is characterized by several phases of volcanism and deformation revealed from interpretation of multichannel seismic profiles and magnetic anomalies. From this study, thinned continental crust spreads between the northern Murray Ridge System and India underneath the northern Indus Fan.  相似文献   
144.
白云鄂博群中两个重要不整合界面特征及区域对比   总被引:5,自引:0,他引:5  
白云鄂博群尖山组顶部的钙质风化壳和比鲁特组顶部的铁质风化壳分别代表长城系与蓟县系及蓟县系与青白口系的分界,并具较大区域上的一致性和可对比性。不整合界面的重新厘定,必然导致白云鄂博群的解体或改为白云鄂博超群。  相似文献   
145.
范家参 《地震研究》2002,25(1):48-52
地壳由半无限大的基岩上一层厚度为H^-的表土层组成,入射地震波为垂直的SH波,产生水平地面运动。当浅源大地震发生时,在极震区以外行波传播产生地面运动将使地壳介质有非线性的有限弹性变形。用小参数摄动法使非线性控制方程为线性化的小参数各阶控制方程,得出头两阶线性控制方程的解析解。  相似文献   
146.
剥蚀及地幔作用下青藏高原隆升过程的数值模拟   总被引:7,自引:2,他引:7       下载免费PDF全文
修改了England和Mckenzie的黏性薄层流变模型中控制大陆形变的连续性方程,将剥蚀作用对高原隆升演化的影响直接引入该方程,并考虑下伏地幔小尺度对流对增厚岩石层的搬离作用对高原隆升演化后期的影响,用有限差分法直接模拟青藏高原隆升过程. 数值模拟结果所显示的高原隆升演化过程与实际观测资料吻合较好,揭示了高原隆升演化过程的非平稳和多阶段的特性;同时还表明上地幔小尺度对流对岩石层底部的搬离作用可能是最近8Ma以来高原快速隆升的主导机制.  相似文献   
147.
基于波动方程的广义屏叠前深度偏移   总被引:15,自引:7,他引:15       下载免费PDF全文
地震波传播算子的计算效率和精度是制约三维叠前深度偏移的关键因素. 广义屏传播算子(GSP, Generalized Screen Propagator)是一种在双域中实现的广角单程波传播算子. 这一方法略去了在非均匀体之间发生的交混回响,但它可以正确处理包括聚焦、衍射、折射和干涉在内的各种多次前向散射现象. 通过背景速度下的相移和扰动速度下的陡倾角校正,广义屏算子能够适应地层速度的强烈横向变化. 这种算子可以直接应用于炮集叠前偏移,通过将广义屏算子作用于双平方根方程,还可以获得一种高效率、高精度的炮检距域叠前深度偏移方法,用于二维共炮检距道集和三维共方位角道集的深度域成像. 本文首先简述了炮检距域广义屏传播算子的理论,进而讨论了共照射角成像(CAI, Common Angle Imaging)条件,由此给出各个不同照射角(炮检距射线参数)下的成像结果,进而得到共照射角像集. 由于照射角和炮检距的对应关系,共照射角像集又为偏移速度分析和AVO(振幅随炮检距变化)分析等提供了有力工具.  相似文献   
148.
We present new and reprocessed seismic reflection data from the area where the southeast and southwest Greenland margins intersected to form a triple junction south of Greenland in the early Tertiary. During breakup at 56 Ma, thick igneous crust was accreted along the entire 1300-km-long southeast Greenland margin from the Greenland Iceland Ridge to, and possibly 100 km beyond, the triple junction into the Labrador Sea. However, highly extended and thin crust 250 km to the west of the triple junction suggests that magmatically starved crustal formation occurred on the southwest Greenland margin at the same time. Thus, a transition from a volcanic to a non-volcanic margin over only 100–200 km is observed. Magmatism related to the impact of the Iceland plume below the North Atlantic around 61 Ma is known from central-west and southeast Greenland. The new seismic data also suggest the presence of a small volcanic plateau of similar age close to the triple junction. The extent of initial plume-related volcanism inferred from these observations is explained by a model of lateral flow of plume material that is guided by relief at the base of the lithosphere. Plume mantle is channelled to great distances provided that significant melting does not take place. Melting causes cooling and dehydration of the plume mantle. The associated viscosity increase acts against lateral flow and restricts plume material to its point of entry into an actively spreading rift. We further suggest that thick Archaean lithosphere blocked direct flow of plume material into the magma-starved southwest Greenland margin while the plume was free to flow into the central west and east Greenland margins. The model is consistent with a plume layer that is only moderately hotter, 100–200°C, than ambient mantle temperature, and has a thickness comparable to lithospheric thickness variations, 50–100 km. Lithospheric architecture, the timing of continental rifting and viscosity changes due to melting of the plume material are therefore critical parameters for understanding the distribution of magmatism.  相似文献   
149.
The non-linear solvers in numerical solutions of water flow in variably saturated soils are prone to convergence difficulties. Many aspects can give rise to such difficulties and in this paper we address the gravity term and the prescribed-flux boundary in the Picard iteration. The problem of the gravity term in the Picard iteration is iteration-to-iteration oscillation as the gravity term is treated, by analogy with the time-step advance technique, ‘explicitly’ in the iteration. The proposed method for the gravity term is an improvement of the ‘implicit’ approach of Zhang and Ewen [Water Resour. Res. 36 (2000) 2777] by extending it to heterogeneous soil and approximating the inter-nodal hydraulic conductivity in the diffusive term and the gravity term with the same scheme. The prescribed-flux boundary in traditional methods also gives rise to iteration-to-iteration oscillation because there is no feedback to the flux in the solution at the new iteration. To reduce such oscillation, a new method is proposed to provide such a feedback to the flux. Comparison with traditional Picard and Newton iteration methods for a wide range of problems show that a combination of these two proposed methods greatly improves the stability and consequently the computational efficiency, making the use of small time step and/or under-relaxation solely for convergence unnecessary.  相似文献   
150.
To improve the accuracy of the numerical evaluation through the 3-D finite difference method, the surface boundary conditions are added to modify the old program. The author has tested the new program by making calculations for the model constructed by Wanamaker, et al (1984). The comparison between the numerical results obtained from this paper and those by Wannamaker, et al (1984) indicates that a pronounced improvement is realized in the evaluation of the horizontal magnetic components. Moreover, better calculations for the vertical magnetic components are also obtainable by using the new program.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号