首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1959篇
  免费   306篇
  国内免费   774篇
测绘学   1篇
大气科学   4篇
地球物理   199篇
地质学   2322篇
海洋学   363篇
天文学   2篇
综合类   66篇
自然地理   82篇
  2024年   9篇
  2023年   23篇
  2022年   51篇
  2021年   52篇
  2020年   88篇
  2019年   101篇
  2018年   90篇
  2017年   71篇
  2016年   119篇
  2015年   104篇
  2014年   121篇
  2013年   182篇
  2012年   99篇
  2011年   162篇
  2010年   128篇
  2009年   145篇
  2008年   165篇
  2007年   171篇
  2006年   147篇
  2005年   140篇
  2004年   108篇
  2003年   93篇
  2002年   97篇
  2001年   72篇
  2000年   78篇
  1999年   71篇
  1998年   56篇
  1997年   40篇
  1996年   37篇
  1995年   32篇
  1994年   25篇
  1993年   39篇
  1992年   20篇
  1991年   17篇
  1990年   13篇
  1989年   11篇
  1988年   14篇
  1987年   10篇
  1986年   18篇
  1985年   7篇
  1984年   5篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1954年   1篇
排序方式: 共有3039条查询结果,搜索用时 31 毫秒
101.
A computational framework is presented for dynamic strain localization and deformation analyses of water‐saturated clay by using a cyclic elasto‐viscoplastic constitutive model. In the model, the nonlinear kinematic hardening rule and softening due to the structural degradation of soil particles are considered. In order to appropriately simulate the large deformation phenomenon in strain localization analysis, the dynamic finite element formulation for a two‐phase mixture is derived in the updated Lagrangian framework. The shear band development is shown through the distributions of viscoplastic shear strain, the axial strain, the mean effective stress, and the pore water pressure in a normally consolidated clay specimen. From the local stress–strain relations, more brittleness is found inside the shear bands than outside of them. The effects of partially drained conditions and mesh‐size dependency on the shear banding are also investigated. The effect of a partially drained boundary is found to be insignificant on the dynamic shear band propagation because of the rapid rate of applied loading and low permeability of the clay. Using the finer mesh results in slightly narrower shear bands; nonetheless, the results manifest convergency through the mesh refinement in terms of the overall shape of shear banding and stress–strain relations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
102.
A bounding surface model is formulated to simulate the behavior of clays that are subject to an anisotropic consolidation stress history. Conventional rotational hardening is revisited from the perspective of thermodynamics. As the free energy cannot be accumulated infinitely upon critical state failure, the deviatoric back stress must vanish. This requires the rotated yield surface to be turned back to eventually align on the hydrostatic axis in the stress plane. Noting that most of the previous propositions violate this restriction, an innovative rotational hardening rule is formulated that is thermodynamically admissible. The bounding surface framework that employs the modified yield surface is applied to simulate elastoplastic deformations for overconsolidated clays, with which the overprediction of strength on the “dry” side can be greatly improved with reasonable results. Other important features, including contractive or dilative response and hardening or softening behavior, can also be well-captured. It has been shown that the model can simulate three types of reconstituted clays that are sheared with initial conditions over a wide range of anisotropic consolidation stress ratios and overconsolidation ratios under both triaxial undrained and drained conditions. Limitations and potential improvement of the model regarding the fabric anisotropy at critical state have been discussed.  相似文献   
103.
Questions persist about interpreting isotope ratios of bound and mobile soil water pools, particularly relative to clay content and extraction conditions. Interactions between pools and resulting extracted water isotope composition are presumably related to soil texture, yet few studies have manipulated the bound pool to understand its influence on soil water processes. Using a series of drying and spiking experiments, we effectively labelled bound and mobile water pools in soils with varying clay content. Soils were first vacuum dried to remove residual water, which was then replaced with heavy isotope-enriched water prior to oven drying and spiking with heavy isotope-depleted water. Water was extracted via centrifugation or cryogenic vacuum distillation (at four temperatures) and analysed for oxygen and hydrogen isotope ratios via isotope ratio mass spectrometry. Water from centrifuged samples fell along a mixing line between the two added waters but was more enriched in heavy isotopes than the depleted label, demonstrating that despite oven drying, a residual pool remains and mixes with the mobile water. Soils with higher clay + silt content appeared to have a larger bound pool. Water from vacuum distillation samples have a significant temperature effect, with high temperature extractions yielding progressively more heavy isotope-enriched values, suggesting that Rayleigh fractionation occurred at low temperatures in the vacuum line. By distinctly labelling bound and mobile soil water pools, we detected interactions between the two that were dependent on soil texture. Although neither extraction method appeared to completely extract the combined bound and mobile (total water) pool, centrifugation and high temperature cryogenic vacuum distillations were comparable for both δ2H and δ18O of soil water isotope ratios.  相似文献   
104.
A detailed multiscale analysis is presented of the swelling phenomenon in unsaturated clay-rich materials in the linear regime through homogenization. Herein, the structural complexity of the material is formulated as a three-scale, triple porosity medium within which microstructural information is transmitted across the various scales, leading ultimately to an enriched stress-deformation relation at the macroscopic scale. As a side note, such derived relationship leads to a tensorial stress partitioning that is reminiscent of a Terzaghi-like effective stress measure. Otherwise, a major result that stands out from previous works is the explicit expression of swelling stress and capillary stress in terms of micromechanical interactions at the very fine scale down to the clay platelet level, along with capillary stress emerging due to interactions between fluid phases at the different scales, including surface tension, pore size, and morphology. More importantly, the swelling stress is correlated with the disjoining forces due to electrochemical effects of charged ions on clay minerals and van der Waals forces at the nanoscale. The resulting analytical expressions also elucidate the role of the various physics in the deformational behavior of clayey material. Finally, the capability of the proposed formulation in capturing salient behaviors of unsaturated expansive clays is illustrated through some numerical examples.  相似文献   
105.
Diffusive mass exchange into immobile water regions within heterogeneous porous aquifers influences the fate of solutes. The percentage of immobile water is often unidentified in natural aquifers though. Hence, the mathematical prediction of solute transport in such heterogeneous aquifers remains challenging. The objective of this study was to find a simple analytical model approach that allows quantifying properties of mobile and immobile water regions and the portion of immobile water in a porous system. Therefore, the Single Fissure Dispersion Model (SFDM), which takes into account diffusive mass exchange between mobile and immobile water zones, was applied to model transport in well‐defined saturated dual‐porosity column experiments. Direct and indirect model validation was performed by running experiments at different flow velocities and using conservative tracer with different molecular diffusion coefficients. In another column setup, immobile water regions were randomly distributed to test the model applicability and to determine the portion of immobile water. In all setups, the tracer concentration curves showed differences in normalized maximum peak concentration, tailing and mass recovery according to their diffusion coefficients. These findings were more pronounced at lower flow rates (larger flow times) indicating the dependency of diffusive mass exchange into immobile water regions on tracers' molecular diffusion coefficients. The SFDM simulated all data with high model efficiency. Successful model validation supported the physical meaning of fitted model parameters. This study showed that the SFDM, developed for fissured aquifers, is applicable in porous media and can be used to determine porosity and volume of regions with immobile water. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
106.
Carbonate concretions provide unique records of ancient biogeochemical processes in marine sediments. Typically, they form in organic‐rich mudstones, where a significant fraction of the bicarbonate required for carbonate precipitation is supplied from the decomposition of organic matter in the sediments. As a result, carbonates that comprise concretions are usually characterized by broad ranges in δ13C and include values that are significantly depleted relative to seawater. This article reports results from a physical, petrographic and geochemical analysis of 238 concretions from the Wheeler Formation (Cambrian Series 3), Utah, USA, which are unusual in several respects. Most prominently, they formed in organic‐poor mudstones (total organic carbon = 0·1 to 0·5%) and are characterized by a narrow range of δ13C that onlaps the range of contemporaneous seawater values. Subtle centre to edge trends in δ13C demonstrate that concretion precipitation was initiated by local chemical gradients set up by microbial activity in the sediments, but was sustained during growth by a large pool of inorganic bicarbonate probably derived from alkaline bottom waters. The large inorganic pool appears to have been important in facilitating rapid precipitation of the concretion matrix, which occurred via both displacive and replacive carbonate precipitation during early diagenesis. Stable isotope data from cogenetic pyrite (δ34S) and silica (δ18O) phases provide insight into the evolution of biogeochemical processes during concretion growth, and suggest that concretions were formed almost entirely during sulphate reduction, with only minor modification thereafter. Concretions of the Wheeler Formation appear to represent an end‐member system of concretion formation in which rapid growth was promoted by ions supplied from sea‐water. As such, they offer insight into the spectrum of processes that may influence the growth of carbonate concretions in marine sediments.  相似文献   
107.
A sequence of shallow reef cores from Heron Reef, Great Barrier Reef, provides new insights into Holocene reef growth models. Isochron analysis of a leeward core transect suggests that the north‐western end of Heron Reef reached current sea‐level by ca 6·5 kyr bp and then prograded leeward at a rate of ca 19·6 m/kyr between 5·1 kyr and 4·1 kyr bp (pre‐1950) to the present reef margin. A single short core on the opposing margin of the reef is consistent with greater and more recent progradation there. Further to the east, one windward core reached modern sea‐level by ca 6·3 kyr bp , suggesting near ‘keep‐up’ behaviour at that location, but the opposing leeward margin behind the lagoon reached sea‐level much more recently. Hence, Heron Reef exhibited significantly different reef growth behaviour on different parts of the same margin. Mean reef accretion rates calculated from within 20 m of one another in the leeward core transect varied between ca 2·9 m and 4·7 m/kyr depending on relative position in the prograding wedge. These cores serve as a warning regarding the use of isolated cores to inform reef growth rates because apparent aggradation at any given location on a reef varies depending on its location relative to a prograding margin. Only transects of closely spaced cores can document reef behaviour adequately so as to inform reef growth models and sea‐level curves. The cores also emphasize potential problems in U‐series dates for corals within a shallow (ca 1·5 m) zone beneath the reef flat. Apparent age inversions restricted to that active diagenetic zone may reflect remobilization and concentration of Th in irregularly distributed microbialites or biofilms that were missed during sample vetting. Importantly, the Th‐containing contaminant causes ages to appear too old, rather than too young, as would be expected from younger cement.  相似文献   
108.
何海军 《地质与勘探》2016,52(3):584-593
本文以南海北部湾SO-31沉积柱为研究对象,研究了14C年代学和粘土矿物学特征,并对部分全球气候事件进行了对比,为古环境、古气候的恢复提供基础资料,也为全球重大气候事件在该区域的响应提供信息。结果显示全新世以来地层沉积正常,平均沉积速率为0.57mm/a。粘土成分主要由蒙脱石、伊利石、高岭石和绿泥石组成,组合类型为蒙脱石-伊利石-高岭石-绿泥石型。全新世以来环境气候演变可划分为五个阶段:低温期阶段、干湿交替的寒冷气候阶段、逐渐升温阶段、干旱温暖气候阶段、湿热阶段。气候在每个阶段背景下还存在一些次级波动,总体趋势为干湿交替,温度逐渐上升。由于海域环境及矿物指标的影响,北部湾SO-31沉积柱粘土矿物记录的降温事件时间比其他指标记录的新仙女木降温事件发生时间滞后500~800a。  相似文献   
109.
贵州西北部发育多处基性侵入岩,总体规模较小(约0.25 Km2),多沿深大断裂侵位,出露于铅锌矿点外围,本文对猫猫厂、凉山两处矿点附近的儿马冲和白岩庆两地小型基性侵入岩进行了重点研究。侵入岩主要岩性为细粒辉长岩,造岩矿物主要为拉长石、普通辉石。SiO2范围为49.60-51.09 wt%,MgO从3.88-4.27 wt %,TiO2为3.69-3.85 wt %。LA-ICP-MS锆石U-Pb定年结果为268.3±7.4 Ma,显示岩浆侵位于二叠纪。基性侵入岩的微量元素蛛网图呈OIB型特征,富集大离子亲石元素(LILE)、轻稀土元素(LREE),亏损重稀土元素(HFEE),相对亏损高场强元素(Nb,Ta),有Sr、Y亏损,Pb富集。(87Sr/86Sr)i范围0.706749~0.707069,(143Nd/144Nd)i范围0.512313~0.512363,εNd(t)范围0.2~1.2;源区熔融深度处于石榴石橄榄岩相深度,可能经历了1-3 %的部分熔融,处于亏损石榴石二辉橄榄岩相向原始石榴石二辉橄榄岩相的过渡区。成岩过程中发生了单斜辉石、斜长石等矿物分离结晶,受到了有限的地壳混染作用,未经历明显的AFC过程。地壳物质在地幔源区中的加入可能是造成地幔富集的主要原因。侵入岩与成矿作用之间的关系,主要通过两方面所表现。一方面是二者间构造活动上的耦合性。另一方面是基性岩在成矿过程中可能发挥了重要的化学屏障层作用。  相似文献   
110.
为了解准噶尔盆地南缘硫磺沟地区中侏罗统头屯河组砂岩成岩-流体演化与铀成矿响应,进而客观评价其成矿潜力。通过光薄片鉴定、X衍射、扫描电镜分析得出:目的层主要为岩屑细砂岩,依次经历了浅埋藏、深埋藏和表生-热液成岩阶段,遭受较强的机械压实、胶结及溶蚀作用。其黏土矿物以高岭石为主,碳酸盐矿物有细亮晶和泥晶两类,硅质胶结微弱,局部见细晶黄铁矿及其褐铁矿氧化产物。成岩环境可能经历了由酸性到弱碱性再到酸性,由同生期氧化-浅埋期还原-短暂抬升期氧化还原过渡-缓慢沉降期还原增强-快速抬升期氧化的演化过程。砂岩中存在较多油气包裹体;酸解总烃为5.72~449.14 μL/kg,以CH4为主;方解石脉δ13CV-PDB为-25‰~-6.7‰,δ18OV-SMOW为11.1‰~18.9‰;结合野外调查认为目的层存在一期中等偏弱的后生油气侵位,从而影响了砂体的Eh及pH值。以上成岩过程及烃类流体活动使得目的层早期形成了小型层间氧化带型铀矿并得以局部保存,晚期形成了一定规模的地表潜水氧化带型铀矿体。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号