首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6796篇
  免费   1682篇
  国内免费   1578篇
测绘学   156篇
大气科学   203篇
地球物理   2157篇
地质学   5364篇
海洋学   928篇
天文学   12篇
综合类   458篇
自然地理   778篇
  2024年   22篇
  2023年   73篇
  2022年   170篇
  2021年   246篇
  2020年   277篇
  2019年   286篇
  2018年   278篇
  2017年   294篇
  2016年   333篇
  2015年   308篇
  2014年   401篇
  2013年   432篇
  2012年   395篇
  2011年   403篇
  2010年   362篇
  2009年   450篇
  2008年   471篇
  2007年   481篇
  2006年   438篇
  2005年   398篇
  2004年   403篇
  2003年   352篇
  2002年   334篇
  2001年   277篇
  2000年   278篇
  1999年   254篇
  1998年   239篇
  1997年   211篇
  1996年   204篇
  1995年   201篇
  1994年   160篇
  1993年   146篇
  1992年   110篇
  1991年   86篇
  1990年   71篇
  1989年   72篇
  1988年   44篇
  1987年   35篇
  1986年   19篇
  1985年   10篇
  1984年   11篇
  1983年   5篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1954年   7篇
排序方式: 共有10000条查询结果,搜索用时 609 毫秒
161.
Questions persist concerning the earthquake potential of the populous and industrial Lake Ontario (Canada–USA) area. Pertinent to those questions is whether the major fault zone that extends along the St. Lawrence River valley, herein named the St. Lawrence fault zone, continues upstream along the St. Lawrence River valley at least as far as Lake Ontario or terminates near Cornwall (Ontario, Canada)–Massena (NY, USA). New geological studies uncovered paleotectonic bedrock faults that are parallel to, and lie within, the projection of that northeast-oriented fault zone between Cornwall and northeastern Lake Ontario, suggesting that the fault zone continues into Lake Ontario. The aforementioned bedrock faults range from meters to tens of kilometers in length and display kinematically incompatible displacements, implying that the fault zone was periodically reactivated in the study area. Beneath Lake Ontario the Hamilton–Presqu'ile fault lines up with the St. Lawrence fault zone and projects to the southwest where it coincides with the Dundas Valley (Ontario, Canada). The Dundas Valley extends landward from beneath the western end of the lake and is marked by a vertical stratigraphic displacement across its width. The alignment of the Hamilton–Presqu'ile fault with the St. Lawrence fault zone strongly suggests that the latter crosses the entire length of Lake Ontario and continues along the Dundas Valley.The Rochester Basin, an east–northeast-trending linear trough in the southeastern corner of Lake Ontario, lies along the southern part of the St. Lawrence fault zone. Submarine dives in May 1997 revealed inclined layers of glaciolacustrine clay along two different scarps within the basin. The inclined layers strike parallel to the long dimension of the basin, and dip about 20° to the north–northwest suggesting that they are the result of rigid-body rotation consequent upon post-glacial faulting. Those post-glacial faults are growth faults as demonstrated by the consistently greater thickness, unit-by-unit, of unconsolidated sediments on the downthrown (northwest) side of the faults relative to their counterparts on the upthrown (southeast) side. Underneath the western part of Lake Ontario is a monoclinal warp that displaces the glacial and post-glacial sediments, and the underlying bedrock–sediment interface. Because of the post-glacial growth faults and the monoclinal warp the St. Lawrence fault zone is inferred to be tectonically active beneath Lake Ontario. Furthermore, within the lake it crosses at least five major faults and fault zones and coexists with other neotectonic structures. Those attributes, combined with the large earthquakes associated with the St. Lawrence fault zone well to the northeast of Lake Ontario, suggest that the seismic risk in the area surrounding and including Lake Ontario is likely much greater than previously believed.  相似文献   
162.
A. Wezel  S. Bender 《GeoJournal》2002,57(4):241-249
In the Alexander von Humboldt National Park in eastern Cuba many endemic animals and plants are found in various different natural habitats, which are considered to be the most important ones for in-situ conservation in the entire Insular Caribbean. In some areas of the National Park agriculture is practised. Thus, the objective of this study was to document and analyse the different land use activities and their consequences for local resource management and conservation of biodiversity in two village areas. A particular question was: what has changed since the foundation of the National Park in 1996? As time series data for land use and aerial photographs were not available for this part of Cuba, a qualitative evaluation was carried out. For this, six different land use units were mapped in 2001 and additional information gathered for areas with special interest related to sustainable land use and resource conservation. Although most parts of the study area are influenced to various degrees by human impact, the different types of land use seem presently not to have a crucial or detrimental impact on the land resources of the Alexander von Humboldt National Park. However, exploitation of the natural resources in certain areas could be improved with different management options to reach sustainability as well as to meet the conservation objectives of the National Park. This includes reduced or abandoned agricultural use of steep slopes to reduce erosion risk as well as a facilitated regeneration of natural vegetation in many parts of the study area to be able to conserve the high valuable biodiversity of the Park. Environmental education seems to have played an important and successful role since the foundation of the Park in 1996. Since then, cropping on steep slopes as well as illegal logging and poaching could be reduced.  相似文献   
163.
The peraluminous tonalite–monzogranite Port Mouton Pluton is a petrological, geochemical, structural, and geochronological anomaly among the many Late Devonian granitoid intrusions of the Meguma Lithotectonic Zone of southern Nova Scotia. The most remarkable structural feature of this pluton is a 4-km-wide zone of strongly foliated (040/subvertical) monzogranites culminating in a narrow (10–30 m), straight, zone of compositionally banded rocks that extends for at least 3 km along strike. The banded monzogranites consist of alternating melanocratic and leucocratic compositions that are complementary to the overall composition of that part of the pluton, suggesting an origin by mineral–melt and mineral–mineral sorting. Biotite and feldspar are strongly foliated in the plane of the compositional bands. These compositional variations and foliations originated by a process of segregation flow during shearing of the main magma with a crystallinity of 55–75%. Subsequent minor brittle fracturing of feldspars, twinning of microcline, development of blocky sub-grains in quartz, and kinking of micas demonstrate overprinting by a high-temperature deformation straddling the monzogranite solidus. Small folds and late sigmoidal dykes indicate dextral movement on the shear zone. This Port Mouton Shear Zone (PMSZ) is approximately co-linear with the only outcrops of Late Devonian mafic intrusions in the area, two of which are syn-plutonic with well-developed mingling textures in the marginal tonalite of the Port Mouton Pluton. Also closely co-linear with the mafic intrusions are a granitoid dyke that extends well beyond the outer contact of the Port Mouton Pluton, a swarm of large aligned angular xenolithic slabs, a zone of thin wispy schlieren banding, a large Be-bearing pegmatite, and a breccia pipe with abundant garnetiferous metapelitic xenoliths. In various ways, the shear zone may control all of these features. The Port Mouton Shear Zone is parallel to many other NE-trending faults and shear zones in the northern Appalachians, probably related to the docking of the Meguma Zone along the Cobequid–Chedabucto Fault system.  相似文献   
164.
Analysis of monthly momentum transport of zonal waves at 850 hPa for the period 1979 to 1993, between ‡S and ‡N for January to April, using zonal (u) and meridional (v) components of wind taken from the ECMWF reanalysis field, shows a positive correlation (.1% level of significance) between the Indian summer monsoon rainfall (June through September) and the momentum transport of wave zero TM(0) over latitudinal belt between 25‡S and 5‡N (LB) during March. Northward (Southward) TM(0) observed in March over LB subsequently leads to a good (drought) monsoon season over India which is found to be true even when the year is marked with the El-Nino event. Similarly a strong westerly zone in the Indian Ocean during March, indicates a good monsoon season for the country, even if the year is marked with El-Nino. The study thus suggests two predictors, TM(0) over LB and the strength of westerly zone in the Indian Ocean during March.  相似文献   
165.
Sm-Nd isotopic compositions of eight lamprophyre samples, which come from the Gezhen gold-bearing shear zone on western Hainan Island, are measured. The Sm-Nd isochron age is 495.98±13.14 Ma, (143Nd/144Nd) 0=0.512094, εNd(t) ranges from +1.80 to +2.00 and TDM from 982 Ma to 1196 Ma (average: 1060 Ma). The authors point out that the whole-rock Sm-Nd isochron age (495.98 ± 13.14 Ma) really represents the petrogenetic age of lamprophyre and the time of magmatism during subsequent subduction.  相似文献   
166.
The Irtysh shear zone (ISZ) of Altai region is the lineament structure of the collision-suture type, where granites of Kalba complex and granodiorites of Zmeinogorsk complex are exposed to regional gneiss-formation and stress-metamorphic alterations. This study is based on detailed structural observations at special grounds using optical and electron microscopy, and on the behavior analysis of isotopic systems from altered granitoids.Within the ISZ area we have established the continuous rows of granitoid stress-metamorphism from initial recrystallization of protolite, its cataclasis and mechanical flaring up to complete recrystallization with alteration of mineral composition and formation of the streaky complexes of granite tectonites of blastomylonite and blastocataclasite types. The directed alteration of rocks has several impulse and is expressed by a change in morphology of mineral grains and their relations, magnification of deformation component in the rock structure, and formation of new mineral phases on the basis of initial ones without surface fluidization. At transformation of isotopic systems from granitoid, their feldspars,biotite and hornblende, we can observe “rejuvenation“ of the rock substrate from 270- 290 Ma for Kalba granitoids to 220-235 Ma for their tectonites, and for Rudny Altai granodiorites, their ages changes from 285-317 Ma to 232-257 Ma for their tectonites.  相似文献   
167.
New field, geochronological, geochemical and biostratigraphical data indicate that the central and northern parts of the Cordillera Occidental of the Andes of Ecuador comprise two terranes. The older (Pallatanga) terrane consists of an early to late (?) Cretaceous oceanic plateau suite, late Cretaceous marine turbidites derived from an unknown basaltic to andesitic volcanic source, and a tectonic mélange of probable late Cretaceous age. The younger (Macuchi) terrane consists of a volcanosedimentary island arc sequence, derived from a basaltic to andesitic source. A previously unidentified, regionally important dextral shear zone named the Chimbo-Toachi shear zone separates the two terranes. Regional evidence suggests that the Pallatanga terrane was accreted to the continental margin (the already accreted Cordillera Real) in Campanian times, producing a tectonic mélange in the suture zone. The Macuchi terrane was accreted to the Pallatanga terrane along the Chimbo-Toachi shear zone during the late Eocene, probably in a dextral shear regime. The correlation of Cretaceous rocks and accretionary events in the Cordillera Occidental of Ecuador and Colombia remains problematical, but the late Eocene event is recognised along the northern Andean margin.  相似文献   
168.
Introduction It is found that there are some relationships between the thermal structures of subduction zones and the deep seismicity, while the mechanism relates the thermal structure and the deep seismicity is still unsure (Helffrich, Brodholt, 1991; Furukawa, 1994; Kirby, et al, 1996). From 1980s, geoscientists have constituted a series of numerical simulations on the stress states of subduction slabs. Based on the kinetic computation of Sung and Burns (1976a, b), Goto, et al (1983, 1987…  相似文献   
169.
含预制软弱带的岩石破裂过程的数值模拟   总被引:2,自引:1,他引:2  
考虑到岩石脆性破坏过程中介质的不均匀性之特点,对岩石样品中含预制弱介质条带的岩石样品破坏过程进行二维有限元数值模拟,并对弱介质带的破坏贯通过程、新的断层的产生和有关的地震活动进行了研究.数值模型展示了岩石从变形、微观破坏到整体破坏的全过程以及微震活动的时空分布特征.应力、应变和微震活动的时空分布形象地描绘了岩石变形的局部化和时空迁移等现象,这与实际地壳中所观测到的现象是一致的.此外,模拟结果与实验观测结果也是一致或相似的.   相似文献   
170.
Shallow seismicity and available source mechanisms in the Andaman–westSunda arc and Andaman sea region suggest distinct variation in stressdistribution pattern both along and across the arc in the overriding plate.Seismotectonic regionalisation indicates that the region could be dividedinto eight broad seismogenic sources of relatively homogeneousdeformation. Crustal deformation rates have been determined for each oneof these sources based on the summation of moment tensors. The analysisshowed that the entire fore arc region is dominated by compressive stresseswith compression in a mean direction of N23°, and the rates ofseismic deformation velocities in this belt decrease northward from 5.2± 0.65 mm/yr near Nias island off Sumatra and 1.12 ±0.13 mm/yr near Great Nicobar islands to as much as 0.4 ±0.04 mm/yr north of 8°N along Andaman–Nicobar islandsregion. The deformation velocities indicate, extension of 0.83 ±0.05 mm/yr along N343° and compression of 0.19 ±0.01 mm/yr along N73° in the Andaman back arc spreadingregion, extension of 0.18 ± 0.01 mm/yr along N125° andcompression of 0.16 ± 0.01 mm/yr along N35° in NicobarDeep and west Andaman fault zone, compression of 0.84 ±0.12 mm/yr N341° and extension of 0.77 ± 0.11 mm/yralong N72° within the transverse tectonic zone in the Andamantrench, N-S compression of 3.19 ± 0.29 mm/yr and an E-Wextension of 1.24 ± 0.11 mm/yr in the Semangko fault zone ofnorth Sumatra. The vertical deformation suggests crustal thinning in theAndaman sea and crustal thickening in the fore arc and Semangko faultzones. The apparent stresses calculated for all major events range between0.1–10 bars and the values increase with increasing seismic moment.However, the apparent stress estimates neither indicate any significantvariation with faulting type nor display any variation across the arc, incontrast to the general observation that the fore arc thrust events showhigher stress levels in the shallow subduction zones. It is inferred that theoblique plate convergence, partial subduction of 90°E Ridge innorth below the Andaman trench and the active back arc spreading are themain contributing factors for the observed stress field within the overridingplate in this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号