首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36443篇
  免费   7188篇
  国内免费   8313篇
测绘学   3964篇
大气科学   4919篇
地球物理   9701篇
地质学   19455篇
海洋学   5308篇
天文学   314篇
综合类   2789篇
自然地理   5494篇
  2024年   169篇
  2023年   439篇
  2022年   1077篇
  2021年   1550篇
  2020年   1524篇
  2019年   1948篇
  2018年   1490篇
  2017年   1716篇
  2016年   1734篇
  2015年   1967篇
  2014年   2445篇
  2013年   2622篇
  2012年   2395篇
  2011年   2615篇
  2010年   2273篇
  2009年   2407篇
  2008年   2423篇
  2007年   2583篇
  2006年   2525篇
  2005年   2077篇
  2004年   1959篇
  2003年   1681篇
  2002年   1406篇
  2001年   1272篇
  2000年   1161篇
  1999年   1032篇
  1998年   958篇
  1997年   804篇
  1996年   681篇
  1995年   603篇
  1994年   571篇
  1993年   435篇
  1992年   362篇
  1991年   244篇
  1990年   175篇
  1989年   215篇
  1988年   123篇
  1987年   87篇
  1986年   48篇
  1985年   48篇
  1984年   20篇
  1983年   14篇
  1982年   9篇
  1981年   12篇
  1980年   11篇
  1979年   3篇
  1978年   11篇
  1972年   1篇
  1971年   3篇
  1954年   13篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
Improper design, faulty planning, mismanagement and incorrect operation of irrigation schemes are the principle reasons for the deterioration of groundwater quality in a large number of countries, in particular in semi-arid and arid regions. The aim of this study is to determine the dimensions of groundwater quality after surface irrigation was begun in the semi-arid Harran Plain. Physical and chemical parameters of the groundwater including pH, temperature, electrical conductivity (EC), sodium, potassium, calcium, magnesium, chloride, bicarbonate, sulphate, nitrate, nitrite, ammonium, total phosphorus, total organic carbon and turbidity were determined monthly during the 2006 water year. The quality of the groundwater in the study area was assessed hydrochemically in order to determine its suitability for human consumption and agricultural purposes. In the general plain, the EC values measured were considerably above the guide level of 650 μS/cm, while nitrate in particular was found in almost all groundwater samples to be significantly above the maximum admissible concentration of 50 mg/l for the quality of water intended for human consumption as per the international and national standards. Total hardness reveals that a majority of the groundwater samples fall in the very hard water category. Interpretation of analytical data shows that Ca–HCO3 and Ca–SO4 are the dominant hydrochemical facies in the study area.  相似文献   
92.
The backward particle tracking method, an effective and powerful tool that can be used to delineate groundwater protection zones, is presented. The theoretical background and insights on the applicability of this method are provided. Moreover, the present work enriches the backward particle tracking method with an uncertainty analysis concerning the porosity values, applying a Monte Carlo (MC) approach, coupled with the use of geographical information systems (GIS). As an application example, a wellfield in the Komotini area, Greece, is investigated. The present study may serve as a potential guideline for wellfield delineation, particularly in areas like Greece where lack of data related to the hydrogeological system is often a problem.  相似文献   
93.
In this paper, we analysed the monitored data from nine groundwater-monitoring transects in the lower reaches of Tarim River during the five times of stream water deliveries to the river transect where the stream flow ceased. The results showed that the groundwater depth in the lower reaches of Tarim River rose from −9.30 m before the conveyances to −8.17 and −6.50 m after the first and second conveyances, −5.81 and −6.00 m after the third and fourth the conveyance, and −4.73 m after the fifth. The horizontal extent of groundwater recharge was gradually enlarged along both sides of the channel of conveyance, i.e., from 250 m in width after the first conveyance to 1,050 m away from the channel after the fourth delivery. With the rising groundwater level, the concentrations of major anions Cl, SO42− and cations Ca2+, Mg2+, Na+, as well as total dissolved solids (TDS) in groundwater underwent a significant change. The spatial variations in groundwater chemistry indicated that the groundwater chemistry at the transect near Daxihaizi Reservoir changed earlier than that farther from it. In the same transect, the chemical variations were earlier in the monitoring well close to watercourse than that farther away from the stream. In general, the concentration of the major ions and TDS at each monitoring well increased remarkably when the water delivery started, and decreased with the continued water delivery, and then increased once again at the end of the study period. Hence, the whole study period may be divided into three stages: the initial stage, the intermediate stage and the later stage. According to the three stages of groundwater chemistry reaction to water delivery and the relationships between groundwater chemical properties and groundwater depths, we educe that under the situation of water delivery, the optimum groundwater depth in the lower reaches of the Tarim River should be −5 m.  相似文献   
94.
An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40–80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.  相似文献   
95.
Three of DRASTIC’s parameters (Depth to Water, Soil Media, and Topography) were modified and another parameter was added (land use/land cover) to the model to determine the potential impact on groundwater from Confined Animal Feeding Operations (CAFO) manure lagoon settings and manure application as fertilizer. Williams County is a mostly agricultural county located in northwest Ohio, USA. It currently has three CAFOs, all dairy, with the possibility of the construction of a multi-million chicken egg CAFO in the near future. A Geographic Information System (GIS) was utilized to modify the Ohio Department of Natural Resources (ODNR) DRASTIC map for the county to fully assess the county-wide pollution potential of CAFOs. The CAFO DRASTIC map indicates that almost half of Williams County has elevated groundwater pollution potential. The rest of the county, primarily the southeast corner, has lower CAFO groundwater pollution potential. Future CAFO development within the county should focus on the southeastern portion of the county where the groundwater table is deeper, and the aquifer is composed of shale substrate with low hydraulic conductivity. The CAFO DRASTIC results are intended to be used as a screening tool and are not to replace site-specific hydrogeologic investigations.  相似文献   
96.
The control of polluted surface runoff and the assessment of possible impacts on groundwater is a concern at the local and regional scale. On this background, a study investigates possible impacts of organic and inorganic pollutants (including bacteria) originating from a permeable asphalt parking lot on the water quality immediately beneath it. The functioning of the permeable pavement, including clogging and restricted vertical percolation, was also evaluated. Four nested sample ports (shallow and deep) were installed below low- and high-traffic areas, including one port outside the parking lot. At least initially there was a good hydraulic connection between the parking surface and the shallow sample ports. The presence of a geotextile layer at the base of the parking lot structure, however, was identified in lab tests as one factor restricting vertical percolation to the deeper ports. Clogging of the permeable surface was most pronounced in heavy traffic areas and below snow pile storage areas. Corroborated by high electric conductivity and chloride measurements, sand brought in by cars during winter was the principal cause for clogging. No bacteria or BOD were found in percolating water. Polycyclic aromatic hydrocarbons (PAH) were present at concentrations near minimum detection limit. Nutrients (nitrate and phosphate) were being leached into the ground via the permeable parking lot surface at annual flux rates of 0.45–0.84 g/m2/year. A multi-species tracer test demonstrated a retention capacity of the permeable parking lot structure of >90% for metals and 27% for nutrients, respectively.  相似文献   
97.
Groundwater in Sfax City (Tunisia) has been known since the beginning of the century for its deterioration in quality, as a result of wastewater recharge into the aquifer. An average value of 12 × 106 m3 of untreated wastewater reaches the groundwater aquifer each year. This would result not only in a chemical and biological contamination of the groundwater, but also in an increase of the aquifer piezometric level. Quantitative impacts were evaluated by examining the groundwater piezometric level at 57 surface wells and piezometers. The survey showed that, during the last two decades, the groundwater level was ever increasing in the urban area with values reaching 7 m in part; and decreasing in Sidi Abid (agricultural area) with values exceeding −3 m. Groundwater samples for chemical and microbial analysis were collected from 41 wells spread throughout the study area. Results showed significantly elevated levels of sodium, chlorides, nitrates and coliform bacteria all over the urban area. High levels (NO3: 56–254 mg/l; Na >1,500 mg/l; Coliforms >30/100 ml) can be related to more densely populated areas with a higher density of pit latrine and recharge wells. Alternatively results showed a very variable chemical composition of groundwater, e.g. electrical conductivity ranges from 4,040 to19,620 μs/cm and the dry residual varies between 1.4 and 14 g/l with concentrations increasing downstream. Furthermore a softening of groundwater in Set Ezzit (highly populated sector) was observed.  相似文献   
98.
Concentrations of trace elements and heavy metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Se, Sr, V and Zn) in the Danjiangkou Reservoir, the water source area of the Middle Route of China’s interbasin South to North Water Transfer Project, were analyzed using an Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) and compared with the national and international standards for drinking water. The results indicated that concentrations of As, Pb, Sb and Se in the Reservoir exceeded the standards and they would pose health risk for residents in the region and the water receiving areas of the interbasin water transfer project. Spatial and temporal variability of the trace elements and heavy metals in the Reservoir implies their mixed sources of natural processing and anthropogenic activities in the upper drainage of the Reservoir. The research results would help develop water resource management and conservation strategy for the interbasin water transfer project.  相似文献   
99.
This paper presents an example of application of the double solid reactant method (DSRM) of Accornero and Marini (Environmental Geology, 2007a), an effective way for modeling the fate of several dissolved trace elements during water–rock interaction. The EQ3/6 software package was used for simulating the irreversible water–rock mass transfer accompanying the generation of the groundwaters of the Porto Plain shallow aquifer, starting from a degassed diluted crateric steam condensate. Reaction path modeling was performed in reaction progress mode and under closed-system conditions. The simulations assumed: (1) bulk dissolution (i.e., without any constraint on the kinetics of dissolution/precipitation reactions) of a single solid phase, a leucite-latitic glass, and (2) precipitation of amorphous silica, barite, alunite, jarosite, anhydrite, kaolinite, a solid mixture of smectites, fluorite, a solid mixture of hydroxides, illite-K, a solid mixture of saponites, a solid mixture of trigonal carbonates and a solid mixture of orthorhombic carbonates. Analytical concentrations of major chemical elements and several trace elements (Cr, Mn, Fe, Ni, Cu, Zn, As, Sr and Ba) in groundwaters were satisfactorily reproduced. In addition to these simulations, similar runs for a rhyolite, a latite and a trachyte permitted to calculate major oxide contents for the authigenic paragenesis which are comparable, to a first approximation, with the corresponding data measured for local altered rocks belonging to the silicic, advanced argillic and intermediate argillic alteration facies. The important role played by both the solid mixture of trigonal carbonates as sequestrator of Mn, Zn, Cu and Ni and the solid mixture of orthorhombic carbonates as scavenger of Sr and Ba is emphasized.
Luigi Marini (Corresponding author)Email:
  相似文献   
100.
Neural network prediction of nitrate in groundwater of Harran Plain, Turkey   总被引:2,自引:0,他引:2  
Monitoring groundwater quality by cost-effective techniques is important as the aquifers are vulnerable to contamination from the uncontrolled discharge of sewage, agricultural and industrial activities. Faulty planning and mismanagement of irrigation schemes are the principle reasons of groundwater quality deterioration. This study presents an artificial neural network (ANN) model predicting concentration of nitrate, the most common pollutant in shallow aquifers, in groundwater of Harran Plain. The samples from 24 observation wells were monthly analysed for 1 year. Nitrate was found in almost all groundwater samples to be significantly above the maximum allowable concentration of 50 mg/L, probably due to the excessive use of artificial fertilizers in intensive agricultural activities. Easily measurable parameters such as temperature, electrical conductivity, groundwater level and pH were used as input parameters in the ANN-based nitrate prediction. The best back-propagation (BP) algorithm and neuron numbers were determined for optimization of the model architecture. The Levenberg–Marquardt algorithm was selected as the best of 12 BP algorithms and optimal neuron number was determined as 25. The model tracked the experimental data very closely (R = 0.93). Hence, it is possible to manage groundwater resources in a more cost-effective and easier way with the proposed model application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号