首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2869篇
  免费   581篇
  国内免费   878篇
测绘学   23篇
大气科学   21篇
地球物理   635篇
地质学   2638篇
海洋学   428篇
天文学   13篇
综合类   149篇
自然地理   421篇
  2024年   6篇
  2023年   35篇
  2022年   90篇
  2021年   73篇
  2020年   91篇
  2019年   85篇
  2018年   96篇
  2017年   92篇
  2016年   95篇
  2015年   97篇
  2014年   134篇
  2013年   179篇
  2012年   187篇
  2011年   118篇
  2010年   118篇
  2009年   199篇
  2008年   187篇
  2007年   248篇
  2006年   214篇
  2005年   172篇
  2004年   206篇
  2003年   163篇
  2002年   172篇
  2001年   140篇
  2000年   154篇
  1999年   139篇
  1998年   129篇
  1997年   126篇
  1996年   99篇
  1995年   107篇
  1994年   68篇
  1993年   67篇
  1992年   55篇
  1991年   43篇
  1990年   35篇
  1989年   28篇
  1988年   22篇
  1987年   19篇
  1986年   11篇
  1985年   10篇
  1984年   4篇
  1983年   7篇
  1982年   4篇
  1981年   2篇
  1978年   1篇
  1954年   1篇
排序方式: 共有4328条查询结果,搜索用时 46 毫秒
71.
Ion-microprobe U–Pb zircon dating of lower-crust metasedimentary granulite are reported on samples from two localities in Europe in order to determine (a) how this environment recorded the Variscan and eo-Alpine events, and (b) whether the transition between the two orogenic cycles was continuous or separated by a gap. The samples come from enclaves hosted by Miocene volcanoes at Bournac in the French Massif Central, and from the granulitic metasedimentary basement of the Alpine Santa Lucia nappe in Corsica, on the South European paleomargin of the Ligurian branch of the Tethys Sea. The zircon ages from Bournac range between 630 and 430 Ma and between 380 and 150 Ma with a major frequency peak at 285 Ma; the zircons older than 430 Ma are interpreted as detrital, whereas those younger than 380 Ma are considered to have formed by metamorphic processes after burial in the lower crust. Zircon ages from Santa Lucia range from to 356 to 157 Ma, with exception of one inherited Archean grain, and are interpreted like the younger Bournac zircons as having been formed by metamorphic processes.

In a granulite metamorphic environment, as opposed to an anatectic environment, new zircon growth can occur in the solid state. Once Zr has been incorporated into zircon, however, it is difficult to remobilize without dissolution; thus Zr available for new zircon growth must result from the breakdown of Zr-bearing minerals during prograde and/or retrograde events. In this light, the U–Pb zircon-age probability curves are interpreted as markers for major tectonometamorphic events, as suggested by the close correspondence between peaks in the curve and geological events recorded in the upper-crust, such as magma emplacement and basin subsidence.

Evidence of a tectonometamorphic gap between the Variscan and Alpine orogeneses is provided by the Santa Lucia zircon-age probability curve, which reveals a probable interlude during the Variscan–Alpine transition between 240 and 210 Ma. Here, the peak at 240 Ma is interpreted as the very beginning of crustal extension and the low at 210 Ma as a period of quiescence prior to the formation of an active margin and oceanization.  相似文献   

72.
Both adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province, eastern China are associated with Cretaceous Cu–Au mineralization. The Shaxi quartz diorite porphyrites exhibit adakite-like geochemical features, such as light rare earth element (LREE) enrichment, heavy REE (HREE) depletion, high Al2O3, MgO, Sr, Sr / Y and La / Yb values, and low Y and Yb contents. They have low εNd(t) values (− 3.46 to − 6.28) and high (87Sr / 86Sr)i ratios (0.7051–0.7057). Sensitive High-Resolution Ion Microprobe (SHRIMP) zircon analyses indicate a crystallization age of 136 ± 3 Ma for the adakitic rocks. Most volcanic rocks and the majority of monzonites and syenites in the Luzong area are K-rich (or shoshonitic) and were also produced during the Cretaceous (140–125 Ma). They are enriched in LREE and large-ion lithophile elements, and depleted in Ti, and Nb and Ba and exhibit relatively lower εNd(t) values ranging from − 4.65 to − 7.03 and relatively higher (87Sr / 86Sr)i ratios varying between 0.7057 and 0.7062. The shoshonitic and adakitic rocks in the Luzong area have similar Pb isotopic compositions (206Pb / 204Pb = 17.90–18.83, 207Pb / 204Pb = 15.45–15.62 and 208Pb / 204Pb = 38.07–38.80). Geological data from the Luzong area suggest that the Cretaceous igneous rocks are distributed along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China and were likely formed in an extensional setting within the Yangtze Block. The Shaxi adakitic rocks were probably derived by the partial melting of delaminated lower crust at pressures equivalent to crustal thickness of > 50 km (i.e., 1.5 GPa), possibly leaving rutile-bearing eclogitic residue. The shoshonitic magmas, in contrast, originated mainly from an enriched mantle metasomatized by subducted oceanic sediments. They underwent early high-pressure (> 1.5 GPa) fractional crystallization at the boundary between thickened (> 50 km) lower crust and lithospheric mantle and late low-pressure (< 1.5 GPa) fractional crystallization in the shallow (< 50 km) crust. The adakitic and shoshonitic rocks appear to be linked to an intra-continental extensional setting where partial melting of enriched mantle and delaminated lower crust was probably controlled by lithospheric thinning and upwelling of hot asthenosphere along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China. Both the shoshonitic and adakitic magmas were fertile with respect to Cu–Au mineralization.  相似文献   
73.
New multichannel seismic reflection data were collected over a 565 km transect covering the non-volcanic rifted margin of the central eastern Grand Banks and the Newfoundland Basin in the northwestern Atlantic. Three major crustal zones are interpreted from west to east over the seaward 350 km of the profile: (1) continental crust; (2) transitional basement and (3) oceanic crust. Continental crust thins over a wide zone (∼160 km) by forming a large rift basin (Carson Basin) and seaward fault block, together with a series of smaller fault blocks eastwards beneath the Salar and Newfoundland basins. Analysis of selected previous reflection profiles (Lithoprobe 85-4, 85-2 and Conrad NB-1) indicates that prominent landward-dipping reflections observed under the continental slope are a regional phenomenon. They define the landward edge of a deep serpentinized mantle layer, which underlies both extended continental crust and transitional basement. The 80-km-wide transitional basement is defined landwards by a basement high that may consist of serpentinized peridotite and seawards by a pair of basement highs of unknown crustal origin. Flat and unreflective transitional basement most likely is exhumed, serpentinized mantle, although our results do not exclude the possibility of anomalously thinned oceanic crust. A Moho reflection below interpreted oceanic crust is first observed landwards of magnetic anomaly M4, 230 km from the shelf break. Extrapolation of ages from chron M0 to the edge of interpreted oceanic crust suggests that the onset of seafloor spreading was ∼138 Ma (Valanginian) in the south (southern Newfoundland Basin) to ∼125 Ma (Barremian–Aptian boundary) in the north (Flemish Cap), comparable to those proposed for the conjugate margins.  相似文献   
74.
75.
76.
Geochronological database considered in the work and characterizing the Anabar collision system in the Northeast Siberian craton includes coordinated results of Sm-Nd and Rb-Sr dating of samples from crustal xenoliths in kimberlites, deep drill holes, and bedrock outcrops. As is inferred, collision developed in three stages dated at 2200–2100, 1940–1760, and 1710–1630 Ma. The age of 2000–1960 Ma is established for substratum of mafic rocks, which probably originated during the lower crust interaction with asthenosphere due to the local collapse of the collision prism. Comparison of Sm-Nd and Rb-Sr isochron dates shows that the system cooling from ≈700 to ≈300°C lasted approximately 300 m.y. with a substantial lag relative to collision metamorphism and granite formation. It is assumed that accretion of the Siberian craton resulted in formation of a giant collision mountainous structure of the Himalayan type that was eroded by 1.65 Ga ago, when accumulation of gently dipping Meso-to Neoproterozoic (Riphean) platform cover commenced.  相似文献   
77.
1IntroductionThe northern segment of the South LancangjiangBelt refers to the terrain about200km east of theYunxian-Lingcang granite in the South LancangjiangBelt(Fig.1).During the seventh Five-Year Plan peri-od,Mo Xuanxue et al.(1993)undertook the resear…  相似文献   
78.
大别山造山带前陆深地震反射剖面   总被引:18,自引:0,他引:18       下载免费PDF全文
在大别山南部和扬子地块前陆实施的深地震反射剖面(140 km)揭示出大别山造山带前陆地壳的精细结构。总体北倾的地壳内部结构与向北缓倾的叠瓦状莫霍面反射揭示出扬子陆块向北俯冲的行迹。莫霍面向北插入大别山造山带下与南大别山地壳内南倾反射震相叠置,构成交叉反射图像,刻画出扬子前陆与大别山造山带的碰撞构造面貌。  相似文献   
79.
东准噶尔巴塔玛依内山组是典型陆相火山.沉积体系(盆地),主体由基性及中酸性火山熔岩组成,火山碎屑岩及火山碎屑沉积岩较少,通过对纸房地区晚石炭世巴塔玛依内山组陆相火山岩的岩石化学、地球化学特征进行系统研究,认为它属于造山期后固结初期,新陆壳裂谷向高原火山岩演化的同岩浆源、同沉积盆地、同火山作用的钙碱系列双峰式火山岩.  相似文献   
80.
西藏尼雄岩体岩石地球化学特征及其成因探讨   总被引:9,自引:0,他引:9       下载免费PDF全文
吴旭铃  陈振华 《中国地质》2005,32(1):122-127
尼雄岩体分布于西藏自治区措勤县木质顶、尼雄、沙松、日阿一带,出露面积180.14km^2,由4个深成岩体组成,平面形态呈不规则椭圆形、圆形串珠状分布,岩石类型有苏长岩、花岗闪长岩、二长花岗岩、花岗岩。根据野外地质调查资料和室内的岩石学、岩石化学等特征的综合研究成果,发现该岩体各单元之间呈脉动式侵入接触,接触界线清晰,且含有较多暗色闪长质微粒包体;稀土总量较低,K、Rb、Ba、Th元素相对富集,Cr、Ti、Nb、Sr、Zr、P元素相对亏损。研究显示尼雄岩体形成于活动陆缘火山弧,构造环境,与雅鲁藏布江大洋板块向北俯冲消减作用有关,为大陆弧花岗岩。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号