首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   16篇
  国内免费   12篇
测绘学   1篇
地球物理   10篇
地质学   48篇
海洋学   54篇
综合类   4篇
自然地理   3篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   4篇
  2014年   11篇
  2013年   4篇
  2012年   4篇
  2011年   5篇
  2010年   3篇
  2009年   6篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   1篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2000年   4篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
31.
The Lower Cretaceous Mural Limestone marks the maximum marine incursion into southeast Arizona during Aptian-Albian time and records the middle Cretaceous transition from coral-dominated to rudist-bivalve dominated reefs. Upper Mural Limestone facies are most often dominated by corals. However, rudists form significant frameworks at some localities, one of which is described in this paper. The paleoenvironmental distribution of three potential reef-builders (corals, rudists, and ‘oysters’) were studied at this patch reef locality. Corals built the framework of the inner reef core. The rudist Petalodontia initially gained a foothold in sheltered areas among corals and subsequently built a framework in the outer reef core. Caprinid rudists formed mounds in the outer reef to back reef areas. The rudists Toucasia and Monopleura and the oyster-like bivalve Chondrodonta formed beds or were scattered in the reef-flank and shelf lagoon sediments and did not contribute to the reef framework.Upper Mural Limestone reefs are important examples of the coexistence of corals and rudists during this middle Cretaceous faunal transition period. This study supports the idea that rudist-bivalves initially colonized protected back-reef areas early in the Cretaceous and only later in the Cretaceous did rudists dominate reef frameworks.  相似文献   
32.
The evolution of modern corals and their early history   总被引:2,自引:0,他引:2  
George D.  Jr.   《Earth》2003,60(3-4):195-225
Scleractinians are a group of calcified anthozoan corals, many of which populate shallow-water tropical to subtropical reefs. Most of these corals calcify rapidly and their success on reefs is related to a symbiotic association with zooxanthellae. These one-celled algal symbionts live in the endodermal tissues of their coral host and are thought responsible for promoting rapid calcification. The evolutionary significance of this symbiosis and the implications it holds for explaining the success of corals is of paramount importance. Scleractinia stands out as one of the few orders of calcified metazoans that arose in Triassic time, long after a greater proliferation of calcified metazoan orders in the Paleozoic. The origin of this coral group, so important in reefs of today, has remained an unsolved problem in paleontology. The idea that Scleractinia evolved from older Paleozoic rugose corals that somehow survived the Permian mass extinction persists among some schools of thought. Paleozoic scleractiniamorphs also have been presented as possible ancestors. The paleontological record shows the first appearance of fossils currently classified within the order Scleractinia to be in the Middle Triassic. These earliest Scleractinia provide a picture of unexpectedly robust taxonomic diversity and high colony integration. Results from molecular biology support a polyphyletic evolution for living Scleractinia and the molecular clock, calibrated against the fossil record, suggests that two major groups of ancestors could extend back to late Paleozoic time. The idea that Scleractinia were derived from soft-bodied, “anemone-like” ancestors that survived the Permian mass extinction, has become a widely considered hypothesis. The 14-million year Mesozoic coral gap stands as a fundamental obstacle to verification of many of these ideas. However, this obstacle is not a barrier for derivation of scleractinians from anemone-like, soft-bodied ancestors. The hypothesis of the ephemeral, “naked coral”, presents the greatest potential for solution of the enigma of the origin of scleractinians. It states that different groups of soft-bodied, unrelated “anemone-like” anthozoans gave rise to various calcified scleractinian-like corals through aragonitic biomineralization. Although there is evidence for this phenomenon being more universal in the mid-Triassic interval, following a lengthy Early Triassic post-extinction perturbation, it appears to have occurred at least three other times prior to this interval. This idea suggests that, because of ephemeral characteristics, the skeleton does not represent a clade of zoantharian evolution but instead represents a grade of organization. In the fossil record, skeletons may have appeared and disappeared at different times as some clades reverted to soft-bodied existence and these phenomena could account for notable gaps in the taxonomic and fossil record. A fuller understanding and possible solution to the problem of the origin of modern corals may be forthcoming. However, it will require synthesis of diverse kinds of data and an integration of findings from paleobiology, stratigraphy, molecular biology, carbonate geochemistry, biochemistry and invertebrate physiology.  相似文献   
33.
The rugosan fauna from the Guanyinqiao Bed (latest Ordovician, Hirnantian) of northern Guizhou, China is known to belong to the cold or cool-water type corals. The components of the fauna are solitary corals only, and corallite septa are generally strongly dilated, especially the streptelasmatid corals are dominant comprising 98% of the whole fauna. The Guanyinqiao Bed is rich in rugosans of 18 genera, which are streptelasnmtid Streptelasma (=Helicelasma), Brachyelasma, Amplexobrachyelasma, Salvadorea, Grewingkia, Borelasma, CrassUasma, Leolasma, KenophyUum, UUernelasma, Paramplexoides, Siphonolasma, Pycnactoides, Dalmanophyllum, Bodophyllum, Axiphoria, Lambeophyllum and cystiphyllid Sinkiangolasma. Although this fauna was fairly abundant in a confined area (northern-northeastern Guizhou, southern Sichuan) during the Hirnantian age, the rugosan mass extinction (generic extinction rate 81%) happened at the end of the Hirnantian Stage. It is conduded that the mass extinction is related to the ending of maximum glaciation and ice cap melting in Gondwana in the southern hemisphere in the latest Hirnantian, resulting in rapid global sea-level rise in the earliest Silurian. In the Upper Yangtze Basin, the sea bottom environments were replaced by anoxic and warmer water during that time, so that the cool-water type rugosan became extinct. The present paper attempts to revise some already described rugose coral genera and species (He, 1978, 1985) and to supplement a few new forms from the Guanyinqiao Bed. Fourteen species of 12 genera are re-described and illustrated, of which one species- Grewingkia latifossulata is new. As a whole, the rugosan fauna of the Guanyinqiao Bed may be correlated with those contemporaneous of North Europe, Estonia and North America, indicating a dose biogeographic affinity to North Europe.  相似文献   
34.
The Magellan mound province in the Porcupine Basin   总被引:5,自引:0,他引:5  
The Magellan mound province is one of the three known provinces of carbonate mounds or cold-water coral banks in the Porcupine Seabight, west of Ireland. It has been studied in detail using a large and varied data set: 2D and 3D seismic data, sidescan sonar imagery and video data collected during ROV deployment have been used to describe the mounds in terms of origin, growth processes and burial. The aim of this paper is to present the Magellan mounds and their setting in an integrated, holistic way. More than 1,000 densely spaced and mainly buried mounds have been identified in the area. They all seem to be rooted on one seismic reflection, suggesting a sudden mound start-up. Their size and spatial distribution characteristics are presented, together with the present-day appearance of the few mounds that reach the seabed. The underlying geology has been studied by means of fault analysis and numerical basin modelling in an attempt to identify possible hydrocarbon migration pathways below or in the surroundings of the Magellan mounds. Although conclusive evidence concerning the processes of mound initiation proves to be elusive, the results of both fault analysis and 2D numerical modelling failed to identify, with confidence, any direct pathways for focused hydrocarbon flow to the Magellan province. Diffuse seepage however may have taken place, as drainage area modelling suggests a possible link between mound position and structural features in the Hovland-Magellan area. During mound development and growth, the interplay of currents and sedimentation seems to have been the most important control. Mounds which could not keep pace with the sedimentation rates were buried, and on the few mounds which maintained growth, only a few corals survive at present.  相似文献   
35.
36.
An era of expanding deep-ocean industrialization is before us, with policy makers establishing governance frameworks for sustainable management of deep-sea resources while scientists learn more about the ecological structure and functioning of the largest biome on the planet. Missing from discussion of the stewardship of the deep ocean is ecological restoration. If existing activities in the deep sea continue or are expanded and new deep-ocean industries are developed, there is need to consider what is required to minimize or repair resulting damages to the deep-sea environment. In addition, thought should be given as to how any past damage can be rectified. This paper develops the discourse on deep-sea restoration and offers guidance on planning and implementing ecological restoration projects for deep-sea ecosystems that are already, or are at threat of becoming, degraded, damaged or destroyed. Two deep-sea restoration case studies or scenarios are described (deep-sea stony corals on the Darwin Mounds off the west coast of Scotland, deep-sea hydrothermal vents in Manus Basin, Papua New Guinea) and are contrasted with on-going saltmarsh restoration in San Francisco Bay. For these case studies, a set of socio-economic, ecological, and technological decision parameters that might favor (or not) their restoration are examined. Costs for hypothetical restoration scenarios in the deep sea are estimated and first indications suggest they may be two to three orders of magnitude greater per hectare than costs for restoration efforts in shallow-water marine systems.  相似文献   
37.
The abundance and health of scleractinian coral communities of Hormuz Island were investigated. For this purpose, we employed 20 m line intercept transects—12 in the intertidal zone and 15 subtidally to evaluate coral cover and community composition. The estimated dead coral coverage was 6.21%±0.81%, while live coral coverage was 16.93%±1.81%, considered as very poor. Totally, 12 genera were recorded, of which Porites with 11.9%±1.4% live cover was the dominant, while Goniopora had the least cover (0.07%±0.08%). Based on Mann-Whitney U-test, live coral coverage, dead coral coverage, algal coverage, cover of other benthic organisms and abiotic components showed significant univariate differences between zones (p<0.05). The Spearman correlation test between the abundance of biotic and abiotic components indicated significant negative correlation of live coral and sand with zoantharian and significant positive correlation of algae and other benthic organisms with rubble. The reef health indices used for the corals indicated that, in general, the environmental conditions were not suitable, which could be attributed to both natural and anthropogenic factors, the most important of which was zoantharian’ overgrowth on the scleractinian corals in this region.  相似文献   
38.
Lower Priabonian coral bioherms and biostromes, encased in prodelta marls/clays, occur in the Aínsa‐Jaca piggyback basin, in the South Central Pyrenean zone. Detailed mapping of lithofacies and bounding surfaces onto photomosaics reveals the architecture of coral buildups. Coral lithosomes occur either isolated or amalgamated in larger buildups. Isolated lithosomes are 1 to 8 m thick and a few hundred metres wide; clay content within coral colonies is significant. Stacked bioherms form low‐relief buildups, commonly 20 to 30 m thick, locally up to 50 m. These bioherms are progressively younger to the west, following progradation of the deltaic complex. The lowermost skeletal‐rich beds consist of bryozoan floatstone with wackestone to packstone matrix, in which planktonic foraminifera are abundant and light‐related organisms absent. Basal coral biostromes, and the base of many bioherms, consist of platy‐coral colonies ‘floating’ in a fine‐grained matrix rich in branches of red algae. Corals with domal or massive shape, locally mixed with branching corals and phaceloid coral colonies, dominate buildup cores. These corals are surrounded by matrix and lack organic framework. The matrix consists of wackestone to packstone, locally floatstone, with conspicuous red algal and coral fragments, along with bryozoans, planktonic and benthonic foraminifera and locally sponges. Coral rudstone and skeletal packstone, with wackestone to packstone matrix, also occur as wedges abutting the buildup margins. Integrative analysis of rock textures, skeletal components, buildup anatomy and facies architecture clearly reveal that these coral buildups developed in a prodelta setting where shifting of delta lobes or rainfall cycles episodically resulted in water transparency that allowed zooxanthellate coral growth. The bathymetric position of the buildups has been constrained from the light‐dependent communities and lithofacies distribution within the buildups. The process‐product analysis used here reinforces the hypothesis that zooxanthellate corals thrived in mesophotic conditions at least during the Late Eocene and until the Late Miocene. Comparative analysis with some selected Upper Eocene coral buildups of the north Mediterranean area show similarities in facies, components and textures, and suggest that they also grew in relatively low light (mesophotic) and low hydrodynamic conditions.  相似文献   
39.
海南岛造礁石珊瑚资源初步调查与分析   总被引:3,自引:0,他引:3  
采用断面法调查于2007年4月至10月对海南岛周边区域的造礁石珊瑚进行调查,结果显示:海南岛周边调查区域造礁石珊瑚有13科95种,优势种为丛生盔形珊瑚、多孔鹿角珊瑚、标准蜂巢珊瑚、五边角蜂巢珊瑚、秘密角蜂巢珊瑚、精巧扁脑珊瑚、梳状菊花珊瑚、澄黄滨珊瑚、二异角孔珊瑚、十字牡丹珊瑚等.海南岛周边活造礁石珊瑚覆盖率为32.74%,其中东部29.84%、南部44.43%、西部17.38%;死造礁石珊瑚覆盖率为3%,其中东部2.29%、南部4.81%、西部1.06%.海南岛造礁石珊瑚补充量为0.44 ind/m2,其中东部为0.56 ind/m2、南部为0.52 ind/m2、西部为0.24ind/m2,总体上,海南岛周边近岸造礁石珊瑚分布状况为南部种类及覆盖度最多,东部次之,西部较少.从地理位置及造礁石珊瑚的空间分布情况来看,海南岛造礁石珊瑚分布呈现由南往北随纬度增高而递减的趋势,分析认为,这主要与珊瑚浮浪幼虫占领新的生境有关.随着近几年过度捕捞、海水养殖、旅游观光等持续进行,海南岛近岸部分区域的造礁石珊瑚呈退化趋势.  相似文献   
40.
Mining and deforestation in the early 20th century, the development of petrochemical industries during the 1950s, and the constant weathering of natural deposits of cinabrium (HgS) have made Golfo Triste, Venezuela, a region impacted by mercury (Hg). We studied the chronology of Hg in coral skeletons of Siderastrea siderea (1 colony, 1900-1996) and Montastraea faveolata (2 colonies, 1930-1999) from Parque Nacional San Esteban. Maximum values of Hg/Ca ratios and standard deviations of Hg enrichment factors occurred in the 1940s, 1960s, and 1980s, and matched maxima of decadal rainfall. Values from the 1950s and 1970s matched periods of abundant but constantly decreasing rainfall and hence were best explained by the combination of runoff and the sudden bioavailability of Hg in the region. This sudden availability likely was associated with activities of the chlorine-caustic soda and fertilizer plants of Morón petrochemical complex, industries that started producing large amounts of Hg in 1958.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号