首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1407篇
  免费   361篇
  国内免费   571篇
测绘学   49篇
大气科学   153篇
地球物理   468篇
地质学   1129篇
海洋学   212篇
天文学   17篇
综合类   79篇
自然地理   232篇
  2024年   7篇
  2023年   24篇
  2022年   63篇
  2021年   76篇
  2020年   101篇
  2019年   116篇
  2018年   94篇
  2017年   61篇
  2016年   80篇
  2015年   85篇
  2014年   101篇
  2013年   133篇
  2012年   108篇
  2011年   107篇
  2010年   100篇
  2009年   96篇
  2008年   104篇
  2007年   112篇
  2006年   109篇
  2005年   102篇
  2004年   99篇
  2003年   57篇
  2002年   66篇
  2001年   38篇
  2000年   45篇
  1999年   31篇
  1998年   26篇
  1997年   29篇
  1996年   26篇
  1995年   14篇
  1994年   24篇
  1993年   25篇
  1992年   13篇
  1991年   10篇
  1990年   11篇
  1989年   10篇
  1988年   13篇
  1987年   6篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   5篇
  1977年   1篇
  1954年   1篇
排序方式: 共有2339条查询结果,搜索用时 437 毫秒
991.
Weathering disaggregates rock into regolith – the fractured or granular earth material that sustains life on the continental land surface. Here, we investigate what controls the depth of regolith formed on ridges of two rock compositions with similar initial porosities in Virginia (USA). A priori, we predicted that the regolith on diabase would be thicker than on granite because the dominant mineral (feldspar) in the diabase weathers faster than its granitic counterpart. However, weathering advanced 20× deeper into the granite than the diabase. The 20 × ‐thicker regolith is attributed mainly to connected micron‐sized pores, microfractures formed around oxidizing biotite at 20 m depth, and the lower iron (Fe) content in the felsic rock. Such porosity allows pervasive advection and deep oxidation in the granite. These observations may explain why regolith worldwide is thicker on felsic compared to mafic rock under similar conditions. To understand regolith formation will require better understanding of such deep oxidation reactions and how they impact fluid flow during weathering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
992.
Frost heave is one of the major complications in highway construction in cold regions. Laboratory experiments are im-portant in the study frost heave behavior of soils, and one-dimensional frost heave ...  相似文献   
993.
To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of 1 °C to 5 °C. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ultrasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or compressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength.  相似文献   
994.
Partially submerged cφ slopes with a horizontal water table exhibit a critical pool level at which the factor of safety becomes a minimum. The phenomenon was first identified using finite element methods, but in this paper, a more thorough analytical investigation is presented. The approach described herein assumes a rigid block sliding with a circular failure mechanism, combined with optimization software to identify the critical circle. The method is initially validated against known slope solutions that assume circular and log-spiral mechanisms and shown to give excellent agreement, especially for flatter slopes. The method is then applied to partially submerged slopes with a focus on the critical pool level. Through detailed investigation of the overturning and restoring moments in the stability analyses, the critical pool level phenomenon is shown to lie in the trade-off between the destabilizing effects of internal pore pressures on soil strength and the stabilizing effect of external hydrostatic water pressures on the slope surface.  相似文献   
995.
Current studies have focused on selecting constitutive models using optimization methods or selecting simple formulas or models using Bayesian methods. In contrast, this paper deals with the challenge to propose an effective Bayesian-based selection method for advanced soil models accounting for the soil uncertainty. Four representative critical state-based advanced sand models are chosen as database of constitutive model. Triaxial tests on Hostun sand are selected as training and testing data. The Bayesian method is enhanced based on transitional Markov chain Monte Carlo method, whereby the generalization ability for each model is simultaneously evaluated, for the model selection. The most plausible/suitable model in terms of predictive ability, generalization ability, and model complexity is selected using training data. The performance of the method is then validated by testing data. Finally, a series of drained triaxial tests on Karlsruhe sand is used for further evaluating the performance.  相似文献   
996.
High‐elevation mountain catchments are often subject to large climatic and topographic gradients. Therefore, high‐density hydrogeochemical observations are needed to understand water sources to streamflow and the temporal and spatial behaviour of flow paths. These sources and flow paths vary seasonally, which dictates short‐term storage and the flux of water in the critical zone (CZ) and affect long‐term CZ evolution. This study utilizes multiyear observations of chemical compositions and water residence times from the Santa Catalina Mountains Critical Zone Observatory, Tucson, Arizona to develop and evaluate competing conceptual models of seasonal streamflow generation. These models were tested using endmember mixing analysis, baseflow recession analysis, and tritium model “ages” of various catchment water sources. A conceptual model involving four endmembers (precipitation, soil water, shallow, and deep groundwater) provided the best match to observations. On average, precipitation contributes 39–69% (55 ± 16%), soil water contributes 25–56% (41 ± 16%), shallow groundwater contributes 1–5% (3 ± 2%), and deep groundwater contributes ~0–3% (1 ± 1%) towards annual streamflow. The mixing space comprised two principal planes formed by (a) precipitation‐soil water‐deep groundwater (dry and summer monsoon season samples) and (b) precipitation‐soil water‐shallow groundwater (winter season samples). Groundwater contribution was most important during the wet winter season. During periods of high dynamic groundwater storage and increased hydrologic connectivity (i.e., spring snowmelt), stream water was more geochemically heterogeneous, that is, geochemical heterogeneity of stream water is storage‐dependent. Endmember mixing analysis and 3H model age results indicate that only 1.4 ± 0.3% of the long‐term annual precipitation becomes deep CZ groundwater flux that influences long‐term deep CZ development through both intercatchment and intracatchment deep groundwater flows.  相似文献   
997.
Land‐use/cover change (LUCC), and more specifically deforestation and multidecadal agriculture, is one of the various controlling factors of water fluxes at the hillslope or catchment scale. We investigated the impact of LUCC on water pathways and stream stormflow generation processes in a subtropical region in southern Brazil. We monitored, sampled and analysed stream water, pore water, subsurface water, and rainwater for dissolved silicon concentration (DSi) and 18O/16O (δ18O) signature to identify contributing sources to the streamflow under forest and under agriculture. Both forested and agricultural catchments were highly responsive to rainfall events in terms of discharge and shallow groundwater level. DSi versus δ18O scatter plots indicated that for both land‐use types, two run‐off components contributed to the stream discharge. The presence of a dense macropore network, combined with the presence of a compact and impeding B‐horizon, led to rapid subsurface flow in the forested catchment. In the agricultural catchment, the rapid response to rainfall was mostly due to surface run‐off. A 2‐component isotopic hydrograph separation indicated a larger contribution of rainfall water to run‐off during rainfall event in the agricultural catchments. We attributed this higher contribution to a decrease in topsoil hydraulic conductivity associated with agricultural practices. The chemical signature of the old water component in the forested catchment was very similar to that of the shallow groundwater and the pore soil water: It is therefore likely that the shallow groundwater was the main source of old water. This is not the case in the agricultural catchments where the old water component had a much higher DSi concentration than the shallow groundwater and the soil pore water. As the agricultural catchments were larger, this may to some extent simply be a scale effect. However, the higher water yields under agriculture and the high DSi concentration observed in the old water under agriculture suggest a significant contribution of deep groundwater to catchment run‐off under agriculture, suggesting that LUCC may have significant effects on weathering rates and patterns.  相似文献   
998.
In many geotechnical systems, such as reinforced slopes and embankments, soil-structure interfaces are often unsaturated. Shear behaviour of unsaturated interfaces is strongly dependent on their matric suctions, as revealed by the results of extensive laboratory tests. So far, constitutive models for unsaturated interfaces are very limited in the literature. This paper reports a new bounding surface model for saturated and unsaturated interfaces. New formulations were developed to incorporate suction effects on the flow rule and plastic modulus. To examine the capability of the proposed model, it was applied to simulate suction- and stress-controlled direct shear tests on unsaturated soil–cement, soil–steel and soil–geotextile interfaces. Measured and computed results are well matched, demonstrating that the proposed model can well capture key features of the shear behaviour of unsaturated interfaces, including suction-dependent dilatancy, stress–strain relation and peak and critical state shear strengths.  相似文献   
999.
In this paper, steady-state conditions for ideal monodisperse dry granular materials are both theoretically and numerically analysed. A series of discrete element (DEM) numerical simulations have been performed on a periodic cell by imposing stress paths characterized by different Lode angles, pressures, and deviatoric strain rates. The dependence of the material response on both inertial number and loading path has been discussed in terms of void ratio, fabric, and granular temperature. DEM numerical results have been finally compared with the prediction of an already conceived model based on both kinetic and critical state theories, here suitably modified to account for three-dimensional conditions.  相似文献   
1000.
Watersheds are complex systems due to their surface and subsurface spatially connected water fluxes and biochemical processes that shape Earth's critical zone. In intensively managed landscapes, the implementation of watershed management practices (WMPs) regulate their short‐term responses, whereas climate variability controls the long‐term processes. Understanding their responses to anthropogenic and natural stressors requires a holistic approach that takes into account their multiscale spatio‐temporal linkages. The objective of this study was to simulate the impacts of spatially and temporally varying WMPs and projected climate changes on the surface and groundwater resources in the Upper Sangamon River Basin (USRB), a watershed in central Illinois greatly impacted by agricultural and industrial operations. The physically based hydrologic model MIKE‐SHE was used to simulate the hydrologic responses of the basin to different WMPs and climatic conditions. The simulation of a WMP was varied spatially across the basin to determine the spectrum of responses and critical conditions. In general, the wetlands and forested riparian buffer scenarios were found to cause a reduction in the average streamflow, whereas crop rotation had varied responses depending on the location of implementation and the climate condition assumed. Reductions of up to 30% in the average streamflow were found for the forested riparian buffer under the ESM 2M climate projections, whereas an increase of up to 13% with the crop rotation schemes under CM3 climate was predicted. The model results showed that the installation of tile drains across the USRB increased the water table depth (from ground level) by up to 56%, making crop production possible. Groundwater level in USRB appeared to be more sensitive to future climatic conditions than to WMP implementation. The impacts of WMPs are determined to depend on the climate conditions under which they are applied. Investigating individual and combined stressors' effects over the critical zone at a watershed scale can lead to a more comprehensive analysis of the risk and trade‐offs in every managerial decision that will enable an efficient use of resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号