首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6378篇
  免费   1398篇
  国内免费   2125篇
测绘学   197篇
大气科学   609篇
地球物理   993篇
地质学   6116篇
海洋学   1026篇
天文学   166篇
综合类   361篇
自然地理   433篇
  2024年   38篇
  2023年   112篇
  2022年   297篇
  2021年   291篇
  2020年   264篇
  2019年   341篇
  2018年   257篇
  2017年   297篇
  2016年   349篇
  2015年   350篇
  2014年   444篇
  2013年   417篇
  2012年   452篇
  2011年   506篇
  2010年   404篇
  2009年   489篇
  2008年   457篇
  2007年   433篇
  2006年   435篇
  2005年   442篇
  2004年   353篇
  2003年   334篇
  2002年   321篇
  2001年   261篇
  2000年   278篇
  1999年   211篇
  1998年   230篇
  1997年   186篇
  1996年   129篇
  1995年   116篇
  1994年   92篇
  1993年   63篇
  1992年   59篇
  1991年   32篇
  1990年   29篇
  1989年   27篇
  1988年   30篇
  1987年   8篇
  1986年   20篇
  1985年   16篇
  1984年   11篇
  1983年   7篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1954年   2篇
排序方式: 共有9901条查询结果,搜索用时 15 毫秒
111.
彭振斌 《探矿工程》1995,(2):41-42,60
介绍了硫铝酸盐“S”型瞬凝水泥干法者漏时使用的配方,阐述了输送工具和扫孔钻具的设计以及灌注工艺技术。  相似文献   
112.
矿井瓦斯危险程度与煤层中瓦斯赋存状况及其泄出方式有关,并取决于多种地质条件和采掘工艺。其中,煤特征条件特别重要。本文分析了湖南省的5种矿井瓦斯危险类型以及相应的煤特征条件,提出了“煤特征指数(I_c)”这一概念。I_c是一项评价矿井瓦斯危险程度的综合指标。研究表明,矿井瓦斯危险愈严重,则其I_c值愈高。应用该项成果预测了16对矿井的瓦斯危险类型,取得了满意的效果。  相似文献   
113.
以吉林省境内红星构造带(已发现油田)和杨柳青构造带(未发现油田)为试验区,首先利用地震地层学方法,研究间接参数特征,确定有利相带和有效圈闭,并在有效圈闭上选择了39个2×2cm时窗。在时窗内提取与地震波动力学有关的信息,即频率、振幅、频谱能量等,然后对这种信息进行统计计算,获得振幅方差等九个参数并对其进行综合分析,从已知油气藏出发,对未知圈闭油气状况进行了三级预测,指出了最有利的勘探靶区。  相似文献   
114.
A model for the carbon and sulfur cycles across the Permian–Triassic boundary has been constructed from carbon and sulfur isotopic data. Results indicate a drop in global organic matter burial, the formation of an anoxic deep ocean, and a large drop in atmospheric oxygen over the time span 270 to 240 Ma. Much of these changes were probably due to a drop in terrestrial productivity and preservation and an increase in global aridity.  相似文献   
115.
Over time periods of 106 years and longer, atmospheric carbon dioxide content is largely controlled by a balance between silicate rock weathering and CO2 sources (degassing from the Earth plus net organic carbon oxidation). Vegetation cover can affect silicate rock weathering rates by increasing soil CO2 content, stabilizing soil cover, and producing organic acids. Forests absorb more solar radiation than most other ecosystems; this tends to warm Earth's climate, especially outside of the tropics; this warmth would tend to increase silicate rock weathering rates. Here, we develop preliminary parameterizations of this effect that could be incorporated into carbonate–silicate cycle models, based on the results of general circulation model simulations.  相似文献   
116.
Nitrogen cycle is an important bio-geochemical process in the environment. Measurement of the total nitrogen (TN) is a routine experiment in agriculture, biology and environmental sciences. The Kjeldahl method (KM) and elemental analyzer method (EA) are both commonly used to determine TN. Total nitrogen by EA is the sum of nitrate (NO3), nitrite (NO2), organic nitrogen and ammonia. Total nitrogen by KM (TKN) is made up of both organic nitrogen and ammonia. A comparative study focused on the two methods is conducted by analysis of TN in 97 samples from the sediment sequence of Gouchi, a salt lake in North China. KM presents a higher degree of accuracy than EA with a standard deviation of 0.007 vs. 0.024. With the presence of nitrate and/or nitrite nitrogen, however, measurement by KM is considerably lower than that by EA. Therefore, for samples from lake sediment sequences or soils in North China, KM is inapplicable to determining TN because of usually high contents of nitrous salt. Despite the inconsistency, use of both methods to the same samples makes sense in reconstructions of climatic and environmental changes from lake sediments. In Lake Gouchi, the contents of nitrate and nitrite nitrogen vary from 1.40% in the lower part of the sequence to 14.77% in the uppermost part, suggesting a gradual evolution process from a fresh water lake to the present-day salt lake.  相似文献   
117.
Mt. Amiata (Southern Tuscany, Central Italy) is an extinct Quaternary volcano located in an area still marked by high heat-flow that is caused by deep seated (6-10 km) hot masses related to Pliocene magmatic activity. The anomalous geothermal gradient gives rise, within the Mesozoic limestone formation (Tuscan series), to geothermal systems that fed the Ca-SO4 thermal springs characterizing this area. Besides of thermal fluids, several cold, dry CO2-rich gas emissions seep out on the NE flank of the volcano. These gas vents mostly consist of large sub-circular craters at variable depth and diameter (5-15 m and 10-50 m, respectively), and represent a serious hazard for the local population, as testified by the several asphyxia casualties that have been repeatedly occurred within these morphological depressions. In this work, the chemical and isotopic compositions of the Mt. Amiata "CO2-rich gas vents" and the estimation of both the CO2 flux from the soil and the CO2 distribution in air of their surroundings, has been carried out in order to: (1) assess the origin of gases, (2) recognize the mechanism of formation for these gas emissions and their relationship with local tectonics, and (3) to evaluate the CO2 hazard in the high flux emanations. The chemical composition of the gases is largely dominated by CO2 (up to 98 % by vol) and shows relatively high concentrations of N2, CH4 and H2S (up to 1.1%, 0.9% and 3.9 % by vol, respectively). These features, coupled with the carbon and nitrogen isotopic signatures, suggest that the origin of the main gas compounds may be related to the contribution of deep (i.e., thermometamorphic processes on carbonate formations for CO2) and shallow (i.e. thermal decomposition of organic material for CH4, N2 and H2S) sources.  相似文献   
118.
The Permian Cedar Mesa Sandstone represents the product of at least 12 separate aeolian erg sequences, each bounded by regionally extensive deflationary supersurfaces. Facies analysis of strata in the White Canyon area of southern Utah indicates that the preserved sequences represent erg‐centre accumulations of mostly dry, though occasionally water table‐influenced aeolian systems. Each sequence records a systematic sedimentary evolution, enabling phases of aeolian sand sea construction, accumulation, deflation and destruction to be discerned and related to a series of underlying controls. Sand sea construction is signalled by a transition from damp sandsheet, ephemeral lake and palaeosol deposition, through a phase of dry sandsheet deposition, to the development of thin, chaotically arranged aeolian dune sets. The onset of the main phase of sand sea accumulation is reflected by an upward transition to larger‐scale, ordered sets which represent the preserved product of climbing trains of sinuous‐crested transverse dunes with original downwind wavelengths of 300–400 m. Regularly spaced reactivation surfaces indicate periodic shifts in wind direction, which probably occurred seasonally. Compound co‐sets of cross strata record the oblique migration of superimposed slipfaced dunes over larger, slipfaceless draa. Each aeolian sequence is capped by a regionally extensive supersurface characterized by abundant calcified rhizoliths and bioturbation and which represents the end product of a widespread deflation episode whereby the accumulation surface was lowered close to the level of the water table as the sand sea was progressively cannibalized by winds that were undersaturated with respect to their potential carrying capacity. Aeolian sequence generation is considered to be directly attributable to cyclical changes in climate and related changes in sea level of probable glacio‐eustatic origin that characterize many Permo‐Carboniferous age successions. Sand sea construction and accumulation occurred during phases of increased aridity and lowered sea level, the main sand supply being former shallow marine shelf sediments that lay to the north‐west. Sand sea deflation and destruction would have commenced at, or shortly after, the time of maximum aridity as the available sand supply became exhausted. Restricted episodes of non‐aeolian accumulation would have occurred during humid (interglacial) phases, accumulation and preservation being enabled by slow rises in the relative water table. Subsidence analysis within the Paradox Basin, together with comparisons to other similar age successions suggests that the climatic cycles responsible for generating the Cedar Mesa erg sequences could be the product of 413 000 years so‐called long eccentricity cycles. By contrast, annual advance cycles within the aeolian dune sets indicate that the sequences themselves could have accumulated in just a few hundred years and therefore imply that the vast majority of time represented by the Cedar Mesa succession was reserved for supersurface development.  相似文献   
119.
The Reykjanes Peninsula in southwest Iceland is a highly oblique spreading segment of the Mid-Atlantic Ridge oriented about 30° from the direction of absolute plate motion. We present a complete and spatially accurate map of fractures for the Reykjanes Peninsula with a level of detail previously unattained. Our map reveals a variability in the pattern of normal, oblique- and strike-slip faults and open fractures which reflects both temporal and spatial strain partitioning within the plate boundary zone. Fracture density varies across the length and width of the peninsula, with density maxima at the ends and at the northern margin of the zone of volcanic activity. Fractures with similar strike cluster into distinct structural domains which can be related to patterns of faulting predicted for oblique extension and to their spatial distribution with respect to volcanic fissure swarms. Additional structural complexity on the Reykjanes Peninsula can be reconciled with magmatic periodicity and associated temporal strain partitioning implied by GPS data, as well as locally perturbed stress fields. Individual faults show variable slip histories, indicating that they may be active during both magmatic and amagmatic periods associated with different strain fields.  相似文献   
120.
A robust and reliable sensor to measure gas (air) superficial velocity (Jg) continuously in flotation systems is introduced. It is based on the sampling of bubbles by buoyancy with the accumulating air allowed to exit through an orifice. At steady state, pressure drop is measured and related to the Jg by prior calibration. The continuous device is readily automated and extended to a multi-unit set-up. The sensor and data collections are described. The governing gas flow equation and models of the dynamic response to air flow rate set point change and fluctuations in froth depth are derived. Model predictions are confirmed against plant data. By taking a moving average, the Jg remains valid in the face of typical plant disturbances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号