首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   24篇
  国内免费   5篇
大气科学   1篇
地球物理   16篇
地质学   116篇
海洋学   17篇
天文学   3篇
综合类   6篇
自然地理   27篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   11篇
  2018年   3篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   11篇
  2013年   5篇
  2012年   15篇
  2011年   7篇
  2010年   10篇
  2009年   10篇
  2008年   6篇
  2007年   9篇
  2006年   7篇
  2005年   10篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2001年   10篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   8篇
  1993年   3篇
  1991年   2篇
  1988年   1篇
排序方式: 共有186条查询结果,搜索用时 312 毫秒
21.
Cosmic ray exposure ages of frost-weathered bedrock from mountain summits in the Outer Hebrides exceed the age of Late Devensian glaciation. Exposure ages of most glacially-abraded bedrock surfaces at low and intermediate elevations are younger than the age of maximum Late Devensian glaciation. These results confirm that previously mapped periglacial trimlines in the Outer Hebrides define the upper limit of bedrock erosion by Late Devensian ice. They are consistent with the interpretation, based on geomorphological evidence, that the trimlines mark the approximate upper limit of a Late Devensian Outer Hebrides Ice Cap. A postglacial exposure age from the summit of Oreval (662 m) suggests that this mountain was overrun during the last glaciation, indicating thicker ice cover and a lower surface gradient west of the ice-cap divide than previously inferred. Although bedrock surfaces below the trimlines are strongly ice-moulded, some show evidence of prior cosmic ray exposure, which we attribute to limited erosion during Late Devensian glaciation. If this interpretation is correct, the youngest apparent ages from these surfaces give the most reliable dates for deglaciation, at ca. 14.5–14 ka. This implies that ice persisted at favourable sites through the warm opening phase of the Windermere Interstade. Comparison with radiocarbon-dated evidence from offshore cores suggests net ice margin retreat of ∼74 km eastwards across the adjacent shelf in > 2.3 ± 1.0 ka. The dating evidence is consistent with relatively rapid retreat of calving margins to the coast, then slower withdrawal of ice margins to high ground. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
22.
De Geer moraine ridges occur in abundance in the coastal zone of northern Sweden, preferentially in areas with proglacial water depths in excess of 150 m at deglaciation. From detailed sedimentological and structural investigations in machine‐dug trenches across De Geer ridges it is concluded that the moraines formed due to subglacial sediment advection to the ice margin during temporary halts in grounding‐line retreat, forming gradually thickening sediment wedges. The proximal part of the moraines were built up in submarginal position as stacked sequences of deforming bed diamictons, intercalated with glaciofluvial canal‐infill sediments, whereas the distal parts were built up from the grounding line by prograding sediment gravity‐flow deposits, distally interfingering with glaciolacustrine sediments. The rapid grounding‐line retreat (ca. 400 m yr?1) was driven by rapid calving, in turn enhanced by fast iceflow and marginal thinning of ice due to deforming bed conditions. The spatial distribution of the moraine ridges indicates stepwise retreat of the grounding line. It is suggested that this is due to slab and flake calving of the ice cliff above the waterline, forming a gradually widening subaqueous ice ledge which eventually breaks off to a new grounding line, followed by regained sediment delivery and ridge build‐up. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
23.
De Geer moraines are very common in the Møre area, western Norway. These moraines occur below the marine limit and outside the Younger Dryas ice limit and occupy tributaries that connect the main fjords through the mountain passes. During deglaciation, ice in these tributaries flowed to the major ice streams. Sections across three De Geer moraines show that the ridges are composed of diamictons and fine-grained sediment, partly in stacked sequences. The diamicton units are interpreted as being composed of water-lain tills, lodgements tills and subaqueous flow deposits. The fine-grained sediment is though to have formed in a proglacial marine environment. Clast fabric of diamictons and deformation structures in underlying sands show that depositional directions for diamicton units and the direction of deformation for the sands is perpendicular to the ridge crests. Mainly based on this evidence, the ridges are thought to have formed by push at the glacier grounding line. The formation of transverse ridges (relative to ice flow) do occur in basal crevasses on modern glaciers, as do swarms of ridges along the front of retreating glaciers. The first mechanism of deposition does not seem to explain the ridges studied in the present paper and hence the importance of this process in the formation of De Geer moraines is questioned. The De Geer moraines were deposited by ice lobes advancing from one main fjord into another; therefore by studying the drainage pattern of the tributary lobes and their sequence of deglaciation, many features of the style of deglaciation of the ice sheet across the area can be determined. The northwestern part of the area was deglaciated earliest. After that, deglaciation proceeded to the southwest parallel to the coast. Subsequently the outer and the central part of Romsdalsfjorden were deglaciated causing ice to drain towards this fjord from both the north and south. The last fjord to be deglaciated was Storfjorden in the south.  相似文献   
24.
Recent publications have presented palynological data from the early postglacial period in the British Isles, which have been interpreted as reflecting sequential glacial retreat following the Loch Lomond Stadial, The methodologies and results of these studies were examined and were concluded to be insufficient to demonstrate glacial retreat. A more cautious methodology was adopted and tested at several pollen sites in the Awe valley, Scotland. The results differed from previous studies in not demonstrating the sequence of palynological changes predicted from the hypothesis. These results need to be replicated at other localities, however, before the deglacial chronology hypothesis can be dismissed. Proposals to test the hypothesis further are suggested.  相似文献   
25.
A synthesis of vegetational and climatic history during the Wisconsinan Late-glacial (13-9 ka BP) is presented for the southern New England region. The interpretations are based on a number of pollen-stratigraphical investigations supported by plant macrofossil data. Chronology is based partly on AMS dates of plant macrofossils. Reference is made briefly to the controversial nature of the evidence for deglaciation in the region. A curve representing mean July temperature changes in the region during the period 13-9 ka BP is provided.  相似文献   
26.
27.
BOOK REVIEW     
Eolian landforms as sandy dunes and dune heaps were mapped by the author in 1979–1980 in a zone where vegetation had been destroyed by a forest fire on 30 June 1976, in an area to the east of Elverum, south-east Norway. The mapped eolian landforms are discussed together with information from 40 samples of the eolian sediment. Winds, mostly from the north and north-west, were responsible for the development of these eolian landforms, utilizing the fluvioglacial sediments accumulated as a sandur during the retreat of the inland ice approximately 10,000 years ago. The winds were active during a short period of time, only a century or so before the area became vegetated.  相似文献   
28.
文章基于山东半岛岩溶洞穴(上小峰洞)一根长约41 cm的石笋SD1的铀系测年和稳定同位素组成分析,获得138. 0~125. 8 ka B. P.平均分辨率为30年的石笋δ18O 和δ13C时间序列,并据此讨论了倒数第二次冰消期区域气候和环境变化的特征及与全球变化的联系.在倒数第二次冰消期,上小峰洞石笋( SD1)δ18O的变化与中国南方石笋δ18O的变化具有类似的阶段变化特征,进一步确认了冰消期北大西洋气候对亚洲季风的重要影响.通过对山东石笋高分辨δ18O记录进行时间序列分析,发现该记录存在显著的约60年、 75年和1620年周期,表明太阳活动和北大西洋涛动与该地区气候变化有紧密的联系.同时,通过对比东亚季风区高分辨率石笋记录,认为在倒数第二次冰消期为"两步冰消"的变化特征.除此之外,上小峰洞石笋碳酸盐δ18O冰期和间冰期平均值的差异仅为0. 7‰,远小于内陆洞穴石笋碳酸盐δ18O冰期和间冰期平均值的差异(羊口洞约为1. 4‰,董哥洞约为2. 2‰,三宝洞约为2. 4‰).这一显著差异可能主要源于海岸线迁移造成的海陆格局的变化对区域季风降水及降水氧同位素组成的重要影响;并且冰期-间冰期海平面变化对近海环境记录、大陆架下垫面、海洋沉积物气候指标等都可能产生影响.  相似文献   
29.
The Laurentide Ice Sheet was characterized by a dynamic polythermal base. However, important data and knowledge gaps have led to contrasting reconstructions in areas such as the Labrador Ice Divide. In this study, detailed fieldwork was conducted at the southeastern edge of a major landform boundary to resolve the relative ice flow chronology and constrain the evolution of the subglacial dynamics, including the migration and collapse of the Labrador Ice Divide. Surficial mapping and analysis of 94 outcrop‐scale ice flow indicators were used to develop a relative ice flow chronology. 10Be exposure ages were used with optical ages to confine the timing of deglaciation within the study area. Four phases of ice flow were identified. Flow 1 was a northeasterly ice flow preserved under non‐erosive subglacial conditions associated with the development of an ice divide. Flow 2 was a northwest ice flow, which we correlate to the Ungava Bay Ice Stream and led to a westward migration of the ice divide, preserving Flow 2 features and resulting in Flow 3's eastward‐trending indicators. Flow 4 is limited to sparse fine striations within and around the regional uplands. The new optical ages and 10Be exposure ages add to the regional geochronology dataset, which further constrains the timing of ice margin retreat in the area to around 8.0 ka. Copyright © 2019 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.  相似文献   
30.
罗海  李杰  邹亚菲  徐会明 《地学前缘》2020,27(6):289-299
湖泊是全球生态系统的重要组成部分。尽管湖泊初级生产力的生物多样性在湖泊生态系统中发挥着非常重要的作用,但对其如何在千年时间尺度上对气候变化做出响应却知之甚少,而千年时间尺度与预测未来变化最为相关。本文以云南云龙天池湖泊为研究对象,以湖泊重要的初级生产力硅藻为研究手段,分析了末次冰消期期间硅藻生物多样性对千年尺度上气候变化的响应。云龙天池硅藻生物多样性表现为暖期高、冷期低。随着全球温度的快速变化,硅藻生物多样性亦对应的快速响应:在转暖时(Bolling/Allerod暖期)快速增加,在转冷时(Herinrich 1和Younger Dryas)快速降低。这些变化主要与温度变化驱动的湖泊环境条件的变化(比如冰封期长短、边岸带水生植被的变化等)有关。研究结果还表明,在末次冰消期期间,云龙天池湖泊硅藻生物多样性与千年尺度的气候变化同步,而且在长时间尺度上,气候变暖对高山湖泊生物多样性可能是有利的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号