首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1193篇
  免费   211篇
  国内免费   666篇
大气科学   4篇
地球物理   239篇
地质学   1535篇
海洋学   210篇
天文学   1篇
综合类   38篇
自然地理   43篇
  2024年   4篇
  2023年   38篇
  2022年   50篇
  2021年   70篇
  2020年   88篇
  2019年   95篇
  2018年   75篇
  2017年   64篇
  2016年   83篇
  2015年   94篇
  2014年   87篇
  2013年   122篇
  2012年   82篇
  2011年   105篇
  2010年   86篇
  2009年   87篇
  2008年   89篇
  2007年   100篇
  2006年   98篇
  2005年   83篇
  2004年   59篇
  2003年   55篇
  2002年   60篇
  2001年   44篇
  2000年   38篇
  1999年   33篇
  1998年   26篇
  1997年   20篇
  1996年   30篇
  1995年   23篇
  1994年   22篇
  1993年   23篇
  1992年   13篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1981年   1篇
  1980年   1篇
排序方式: 共有2070条查询结果,搜索用时 734 毫秒
51.
孔隙流体压力与流体排驱的关系   总被引:2,自引:3,他引:2  
冯乔  张小莉 《地质论评》1997,43(3):297-302
本文讨论了在压实作用下孔隙流体压力的形成以及与流体排驱的关系,指出异常孔隙流体压力是因岩石渗透率变化引起毛细管力增加而产生的,且二者之间在流体压力孕育过程中一直维持一个动态平衡状态。对于连续沉积的盆地,只有当异常孔隙流体压力增加到超过岩石的抗剪强度时,因岩石发生剪切破裂导致毛细管力降低,流体才被排出;对于强烈构造变动的盆地,因地层大量剥蚀引起负荷压力降低,其降低幅度达到或超过岩石的抗张强度时,岩石  相似文献   
52.
Pore water pressures (positive and negative) were monitored for four years (1996–1999) using a series of tensiometer‐piezometers at increasing depths in a riverbank of the Sieve River, Tuscany (central Italy), with the overall objective of investigating pore pressure changes in response to ?ow events and their effects on bank stability. The saturated/unsaturated ?ow was modelled using a ?nite element seepage analysis, for the main ?ow events occurring during the four‐year monitoring period. Modelling results were validated by comparing measured with computed pore water pressure values for a series of representative events. Riverbank stability analysis was conducted by applying the limit equilibrium method (Morgenstern‐Price), using pore water pressure distributions obtained by the seepage analysis. The simulation of the 14 December 1996 event, during which a bank failure occurred, is reported in detail to illustrate the relations between the water table and river stage during the various phases of the hydrograph and their effects on bank stability. The simulation, according to monitored data, shows that the failure occurred three hours after the peak stage, during the inversion of ?ow (from the bank towards the river). A relatively limited development of positive pore pressures, reducing the effective stress and annulling the shear strength term due to the matric suction, and the sudden loss of the con?ning pressure of the river during the initial drawdown were responsible for triggering the mass failure. Results deriving from the seepage and stability analysis of nine selected ?ow events were then used to investigate the role of the ?ow event characteristics (in terms of peak stages and hydrograph characteristics) and of changes in bank geometry. Besides the peak river stage, which mainly controls the occurrence of conditions of instability, an important role is played by the hydrograph characteristics, in particular by the presence of one or more minor peaks in the river stage preceding the main one. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
53.
A coupled hydro-chemo-mechanical numerical model is developed for these coupled phenomena in many engineering fields. The model has been applied to predicting the response of a stressed rockmass column to an injected reactive fluid (reagent) flow. The response includes evolutions of porosity, permeability, reagent and mineral concentrations during dissolution. In the model, the progress of dissolution is defined by the change in porosity ratio and the porosity increases with dissolution assuming there is no precipitation. The numerical evolutions of porosity, permeability, reagent and mineral concentrations during dissolution are validated against steady state solutions. The model results show that these evolutions are regulated to a certain extent by the applied external loadings: an applied extensional stress enhances the progress of the dissolution process while an applied compression stress slows the progress of the dissolution process. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
54.
55.
Feldspar and clastic debris are the most important constituent framework grains of sedimentary clastic rocks and their chemical dissolution plays an essential role in the formation and evolution of the secondary pore in the reservoir rocks. On the basis of thermodynamic phase equilibrium, this study investigates the chemical equilibrium relationships between fluid and various plagioclase and K-feldspar in diagenesis of the sediments, particularly, the impact of temperature and fluid compositions (pH, activity of K+, Na+, Ca2+ and so on) on precipitation and dissolution equilibria of feldspars. Feldspar is extremely easily dissolved in the acid pore water with a low salinity when temperature decreases. The dissolution of anorthite end-member of plagioclase is related to the Ca content of the mineral and the fluid, higher Ca either in the mineral or in the fluid, easier dissolution of the feldspar. Moreover, the dissolution of albite end-member of plagioclase is related to Na of both the mineral and fluid,  相似文献   
56.
Uur Doan 《Geomorphology》2005,71(3-4):389-401
Karstification-based land subsidence was found in the Upper Tigris Basin with dimensions not seen anywhere else in Turkey. The area of land subsidence, where there are secondary and tertiary subsidence developments, reaches 140 km2. Subsidence depth ranges between 40 and 70 m. The subsidence was formed as a result of subsurface gypsum dissolution in Lower Miocene formation. Although there are limestones together with gypsum and Eocene limestone below them in the area, a subsidence with such a large area is indicative of karstification in the gypsum. The stratigraphical cross-sections taken from the wells and the water analyses also verify this fact. The Lower Miocene gypsum, which shows confined aquifer features, was completely dissolved by the aggressive waters injected from the top and discharged through by Zellek Fault. This resulted in the development of subsidence and formation of caprock dolines on loosely textured Upper Miocene–Pliocene cover formations. The Tigris River runs through the subsidence area between Batman and Bismil. There are four terrace levels as T1 (40 m), T2 (30 m), T3 (10 m) and T4 (4–5 m) in the Tigris River valley. It was also found that there were some movements of the levels of the terraces in the valley by subsidence. The subsidence developed gradually throughout the Quaternary; however no terrace was formed purely because of subsidence.  相似文献   
57.
We have investigated the evolution of an active silicic magma-feedingsystem beneath Usu volcano, Japan, where eight eruptions havebeen recorded since AD 1663. All magmatic products contain similartypes of plagioclase and orthopyroxene phenocrysts that consistof homogeneous cores with uniform compositions, and a zonedmantle that increases in size with time. The compositions ofplagioclase and orthopyroxene phenocrysts vary gradually andregularly with time, as do the bulk-rock compositions. The textureof these phenocrysts also changes systematically, caused byprogressive crystal growth, dissolution and diffusion. On thebasis of these observations, we conclude that the same magma-feedingsystem has persisted at Usu volcano since AD 1663. Compositionalvariation of magnetite phenocrysts differs from that of plagioclaseand orthopyroxene, because magnetite has large diffusion coefficientsand should represent magmatic conditions immediately beforethe eruption. Most pumices from Usu volcano contain two typesof magnetite phenocryst, each with a different composition andcrystallization temperature, indicating that two magmas mixedbefore each eruption (approximately several days before). Theend-members changed with time: rhyolite + basaltic andesite(1663); dacite ± rhyolite (1769, 1822, 1853); dacite± dacite (1977, 2000). The temperature of the magma apparentlyincreases with time, and the increase can be explained by sequentialtapping from a magma chamber with a thermal and chemical gradientin addition to injection of high-temperature magma. KEY WORDS: continuous existence of magma chamber; dacite; dissolution and diffusion of phenocrysts; magma mixing; magnetite  相似文献   
58.
Numerical modeling has now become an indispensable tool for investigating the fundamental mechanisms of toxic nonaqueous phase liquid (NAPL) removal from contaminated groundwater systems. Because the domain of a contaminated groundwater system may involve irregular shapes in geometry, it is necessary to use general quadrilateral elements, in which two neighbor sides are no longer perpendicular to each other. This can cause numerical errors on the computational simulation results due to mesh discretization effect. After the dimensionless governing equations of NAPL dissolution problems are briefly described, the propagation theory of the mesh discretization error associated with a NAPL dissolution system is first presented for a rectangular domain and then extended to a trapezoidal domain. This leads to the establishment of the finger‐amplitude growing theory that is associated with both the corner effect that takes place just at the entrance of the flow in a trapezoidal domain and the mesh discretization effect that occurs in the whole NAPL dissolution system of the trapezoidal domain. This theory can be used to make the approximate error estimation of the corresponding computational simulation results. The related theoretical analysis and numerical results have demonstrated the following: (1) both the corner effect and the mesh discretization effect can be quantitatively viewed as a kind of small perturbation, which can grow in unstable NAPL dissolution systems, so that they can have some considerable effects on the computational results of such systems; (2) the proposed finger‐amplitude growing theory associated with the corner effect at the entrance of a trapezoidal domain is useful for correctly explaining why the finger at either the top or bottom boundary grows much faster than that within the interior of the trapezoidal domain; (3) the proposed finger‐amplitude growing theory associated with the mesh discretization error in the NAPL dissolution system of a trapezoidal domain can be used for quantitatively assessing the correctness of computational simulations of NAPL dissolution front instability problems in trapezoidal domains, so that we can ensure that the computational simulation results are controlled by the physics of the NAPL dissolution system, rather than by the numerical artifacts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
59.
Stiffened deep mixed (SDM) column is a new ground improvement technique to improve soft soil, which can be used to increase bearing capacity, reduce deformation, and enhance stability of soft soil. This technique has been successfully adopted to support the highway and railway embankments over soft soils in China and other countries. However, there have been limited investigations on its consolidation under embankment loading. This paper developed an analytical solution for the consolidation of embankment over soft soil with SDM column in which core pile is equal to or shorter than outer DM column. The consolidation problem was simplified as a consolidation of composite soil considering the load shear effect of core pile. The developed solution was verified by a comparison with the results computed by three-dimensional (3-D) finite element analysis. A parametric study based on the derived solution was conducted to investigate influence factors—length of core pile, diameter of core pile, diameter of SDM column, modulus of DM column, and permeability coefficient of DM column—on the consolidation behavior of SDM column-supported embankment over soft soil. The developed solution was applied to a case history of SDM column-supported embankment, and a good agreement was found between the predictions and the field measurements.  相似文献   
60.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号