首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20234篇
  免费   3975篇
  国内免费   3807篇
测绘学   892篇
大气科学   737篇
地球物理   2047篇
地质学   12643篇
海洋学   1741篇
天文学   7347篇
综合类   1031篇
自然地理   1578篇
  2024年   84篇
  2023年   188篇
  2022年   564篇
  2021年   704篇
  2020年   707篇
  2019年   844篇
  2018年   695篇
  2017年   702篇
  2016年   784篇
  2015年   810篇
  2014年   1219篇
  2013年   1270篇
  2012年   1255篇
  2011年   1393篇
  2010年   1321篇
  2009年   1812篇
  2008年   1663篇
  2007年   1590篇
  2006年   1545篇
  2005年   1335篇
  2004年   1204篇
  2003年   1013篇
  2002年   864篇
  2001年   789篇
  2000年   698篇
  1999年   662篇
  1998年   529篇
  1997年   276篇
  1996年   232篇
  1995年   195篇
  1994年   185篇
  1993年   165篇
  1992年   125篇
  1991年   84篇
  1990年   90篇
  1989年   85篇
  1988年   61篇
  1987年   35篇
  1986年   39篇
  1985年   50篇
  1984年   44篇
  1983年   23篇
  1982年   18篇
  1981年   9篇
  1980年   11篇
  1979年   4篇
  1978年   6篇
  1977年   19篇
  1972年   3篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
82.
青岛市黄岛区拟建设海底地下油气储藏库,前期地质勘察工作要求施工倾角45°、深220m的取心钻孔4个,并在孔内分段进行压水试验.本文介绍了如何利用XY-4型金刚石小口径钻机施工基岩深斜孔及压水试验技术.  相似文献   
83.
We report on the metal distribution in the intracluster medium around the radio galaxy 4C+55.16     observed with the Chandra X-ray Observatory . The radial metallicity profile shows a dramatic change at 10 arcsec (∼50 kpc) in radius from half solar to twice solar at inner radii. Also found was a plume-like feature located at ∼3 arcsec to the south-west of the centre of the galaxy, which is mostly accounted for by a strong enhancement of iron L emission. The X-ray spectrum of the plume is characterized by the metal abundance pattern of Type Ia supernovae (SNeIa), i.e. large ratios of Fe to α elements, with the iron metallicity being unusually high at     solar (90 per cent error). How the plume has been formed is not entirely clear. The inhomogeneous iron distribution suggested in this cluster provides important clues to understanding the metal enrichment process of the cluster medium.  相似文献   
84.
Recent observations of stellar composition suggest that elements in the Sun are significantly more abundant than in other stars. The reduction in the available element budget implies a drastic revision in current models of interstellar dust. Theoretical models are therefore exploring fluffy, porous physical structure for the grain material. Since a detailed exact treatment of extinction cross-sections is mandatory for a correct understanding of the nature of interstellar dust, we present a technique based on the multipole expansions of the electromagnetic field, which has proven to be general, flexible and powerful in treating scattering of light by porous, composite, arbitrarily shaped particles. The results of this study speak in favour of core–mantle structures characterized by the presence of porosities.  相似文献   
85.
During re-processing and analysis of the entire ROSAT Wide Field Camera (WFC) pointed observations data base, we discovered a serendipitous, off-axis detection of the cataclysmic variable SW UMa at the onset of its 1997 October superoutburst. Although long outbursts in this SU UMa-type system are known to occur every ∼ 450 d, none had ever been previously observed in the extreme ultra-violet (EUV) by ROSAT . The WFC observations began just ≈13 hr after the optical rise was detected. With a peak count rate of ∼ 4.5 count s−1 in the S1 filter, SW UMa was temporarily the third brightest object in the sky in this waveband. Over the next ≈19 hr the measured EUV flux dropped to < 2 count s−1, while the optical brightness remained essentially static at m v∼11 . Similar behaviour has also been recently reported in the EUV light curve of the related SU UMa-type binary OY Car during superoutburst, as reported by Mauche & Raymond. In contrast, U Gem-type dwarf novae show no such early EUV dip during normal outbursts. Therefore, this feature may be common in superoutbursts of SU UMa-like systems. We expand on ideas first put forward by Osaki and Mauche & Raymond and offer an explanation for this behaviour by examining the interplay between the thermal and tidal instabilities that affect the accretion discs in these systems.  相似文献   
86.
We present archival Rossi X-ray Timing Explorer ( RXTE ) and simultaneous Advanced Satellite for Cosmology and Astrophysics ( ASCA ) data of the eclipsing low mass X-ray binary (LMXB) X 1822−371. Our spectral analysis shows that a variety of simple models can fit the spectra relatively well. Of these models, we explore two in detail through phase-resolved fits. These two models represent the case of a very optically thick and a very optically thin corona. While systematic residuals remain at high energies, the overall spectral shape is well approximated. The same two basic models are fitted to the X-ray light curve, which shows sinusoidal modulations interpreted as absorption by an opaque disc rim of varying height. The geometry we infer from these fits is consistent with previous studies: the disc rim reaches out to the tidal truncation radius, while the radius of the corona (approximated as spherical) is very close to the circularization radius. Timing analysis of the RXTE data shows a time-lag from hard to soft consistent with the coronal size inferred from the fits. Neither the spectra nor the light curve fits allow us to rule out either model, leaving a key ingredient of the X 1822−371 puzzle unsolved. Furthermore, while previous studies were consistent with the central object being a 1.4 M neutron star, which has been adopted as the best guess scenario for this system, our light curve fits show that a white dwarf or black hole primary can work just as well. Based on previously published estimates of the orbital evolution of X 1822−371, however, we suggest that this system contains either a neutron star or a low mass (≲2.5 M) black hole and is in a transitional state of duration shortward of 107 yr.  相似文献   
87.
88.
1 INTRODUCTIONIn the previous paper (on et al. 1999, hereafter Paper I), we investigated the wavelength-dependence of four colltribution functions (CFs) derived from dmerent formal solutions andreferring to different emergellt quantities in the unpolarized case. Because one cannot generallyassign a single formation region to the whole line band in a real stellar atmosphere, e.g., the solaratmosphere, instead, the line formation region can be defined as the layers deviating farthestfrom t…  相似文献   
89.
I discuss the effect of non-radial motions on the small-scale peculiar pairwise velocity dispersions (PVD) of galaxies in a cold dark matter (CDM) model and calculate the PVD for the SCDM model by means of the refined cosmic virial theorem (CVT), taking account of non-radial motions by means of the Del Popolo & Gambera model. I compare the results of the present model with the data from Davis & Peebles, the IRAS value at 1  h −1 Mpc of Fisher et al. and Marzke et al. I show that while the SCDM model disagrees with the observed values, as pointed out by several authors, taking account of non-radial motions produces smaller values for the PVD. At r ≤1  h −1 Mpc the result is in agreement with Bartlett & Blanchard. In the light of this last paper, the result may be also read as a strong dependence of the CVT prediction on the model chosen to describe the mass distribution around galaxies, suggesting that the CVT cannot be taken as a direct evidence for a low-density Universe. Similarly to what is shown by Del Popolo & Gambera and Del Popolo et al., the agreement of our model to the observational data is because of a scale-dependent bias induced by the presence of non-radial motions. As the assumptions on which CVT is based have been questioned by several authors, I also calculated the PVD using the redshift distortion in the redshift-space correlation function, ξ z( r p, π), and compared it with the PVD measured from the Las Campanas Redshift Survey by Jing et al. The result confirms that non-radial motions influence the PVD making them agree better with the observed data.  相似文献   
90.
We use cosmological smooth particle hydrodynamical (SPH) simulations to study the effects of mergers in the star formation history of galactic objects in hierarchical clustering scenarios. We find that during some merger events, gaseous discs can experience two starbursts: the first one during the orbital decay phase, owing to gas inflows driven as the satellite approaches, and the second one when the two baryonic clumps collide. A trend for these first induced starbursts to be more efficient at transforming the gas into stars is also found. We detect that systems that do not experience early gas inflows have well-formed stellar bulges and more concentrated potential wells, which seem to be responsible for preventing further gas inward transport triggered by tidal forces. The potential wells concentrate owing to the accumulation of baryons in the central regions and of dark matter as the result of the pulling in by baryons. The coupled evolution of the dark matter and baryons would lead to an evolutionary sequence during which systems with shallower total potential wells suffer early gas inflows during the orbital decay phase that help to feed their central mass concentration, pulling in dark matter and contributing to build up more stable systems. Within this scenario, starbursts triggered by early gas inflows are more likely to occur at early stages of evolution of the systems and to be an important contributor to the formation of stellar bulges. Our results constitute the first proof that bulges can form as the product of collapse, collisions and secular evolution in a cosmological framework, and they are consistent with a rejuvenation of the stellar population in bulges at intermediate z with, at least, 50 per cent of the stars (in SCDM) being formed at high z .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号