首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1806篇
  免费   226篇
  国内免费   301篇
测绘学   8篇
大气科学   1篇
地球物理   378篇
地质学   1482篇
海洋学   85篇
天文学   14篇
综合类   47篇
自然地理   318篇
  2024年   3篇
  2023年   19篇
  2022年   22篇
  2021年   38篇
  2020年   39篇
  2019年   74篇
  2018年   46篇
  2017年   39篇
  2016年   38篇
  2015年   57篇
  2014年   57篇
  2013年   156篇
  2012年   91篇
  2011年   53篇
  2010年   38篇
  2009年   93篇
  2008年   121篇
  2007年   99篇
  2006年   110篇
  2005年   95篇
  2004年   133篇
  2003年   85篇
  2002年   93篇
  2001年   71篇
  2000年   67篇
  1999年   74篇
  1998年   86篇
  1997年   80篇
  1996年   65篇
  1995年   68篇
  1994年   54篇
  1993年   31篇
  1992年   25篇
  1991年   17篇
  1990年   25篇
  1989年   15篇
  1988年   10篇
  1987年   10篇
  1986年   8篇
  1985年   10篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1973年   1篇
排序方式: 共有2333条查询结果,搜索用时 15 毫秒
41.
Danian marine sedimentation in the Paris Basin occurred between two major erosional phases. The earlier was responsible for the stripping of presumably deposited Maastrichtian sediments and of a variable thickness of Campanian chalk. The later occurred during the late Palaeocene and resulted in the erosion of almost all Danian deposits, which are now limited to small and scattered outcrops. One of these outcrops corresponds to reefal and peri‐reefal limestones of middle to late Danian age, exposed in the quarries of Vigny (NW of Paris). Danian deposits here show intricate relations with the surrounding Campanian chalk. Danian sedimentation was contemporaneous with faulting, which generated signifiant sea‐floor relief and resulted in contrasting depositional areas: topographic highs with coralgal reefs, and depressions where calcirudite channel fill accumulated. Normal faulting occurred along WNW–ESE master faults. The generation of submarine fault scarps gave rise to various types of gravity‐driven phenomena, including the sliding and slumping of large blocks of reefal limestone and the deposition of carbonate debris flows. Along with the redeposition of the Danian carbonates, flows of fluidized and reworked Campanian chalk resulted from the peculiar physical properties of the undercompacted chalks. Erosion and faulting occurred predominantly during the Palaeocene and represent a major episode in the physiographic evolution of the Paris Basin.  相似文献   
42.
Apatite fission track analysis was performed on 56 samples from central Spain to unravel the far field effects of the Alpine plate tectonic history of Iberia. The modelled thermal histories reveal complex cooling in the Cenozoic, indicative of intermittent denudation. Accelerated cooling events occurred across the Spanish Central System (SCS) from the Middle Eocene to Recent. These accelerated cooling events resulted in up to 2.8±0.9 km of denudation in the western Sierra de Gredos and 3.6±1.0 km in the central and eastern Gredos (assuming a paleogeothermal gradient of 28±5 °C and a surface temperature of 10 °C). The greatest amount of denudation (5.0±1.6 km) occurred in the Sierra de Guadarrama. Accompanying rock uplift was 4.7±1.0 and 5.9±1.6 km in the eastern Gredos and Guadarrama, respectively. Most denudation in the Gredos occurred from the Middle Eocene to the Early Miocene and can be related to the N–S stress field, induced by the Pyrenean compression. In the Guadarrama, the greatest denudation was Pliocene to Recent of age and seems related to the ongoing NW–SE Betic compression. The fact that the formation of the E–W trending Gredos coincides with the N–S Pyrenean compression and the creation of the present day morphology of the NE–SW trending Guadarrama with the younger NW–SE Betic compression, indicates that they record the far field effects of Alpine plate tectonics on Iberia. The trend of pre-existing lineaments was of major importance in influencing the style and magnitude of these of far field effects.  相似文献   
43.
In the last decade, even in areas that had been considered tectonically stable, a great amount of Cenozoic, including the Quaternary period, structural data have been collected throughout Brazil. The main goal of this study is to describe the Cenozoic structures and tectonic evolution of an area that is located at the border of the Paraná Basin in the state of São Paulo.The research methods consisted of the analysis of: (1) brittle structure data, mainly conjugate fractures and fault slip data; (2) lineaments traced on air photos and TM Landsat and radar images; and (3) a second-order base surface map.The study area, during the Cenozoic, has been affected by five strike–slip tectonic events, which generated mainly strike–slip faults, and secondarily normal and reverse ones. The events were named, from the oldest to the youngest, E1-NE, E2-EW, E3-NW, E4-NS, and E5-NNE; and the maximum principal stresses σ1 strike approximately NE–SW, E–W, NW–SE, N–S, and NNE–SSW, respectively. Event E2-EW seems to have been contemporaneous with the deposition of the Rio Claro Formation, the most important Cenozoic deposit of probable Neogenic age, and also to have controlled the distribution of its deposits. Event E3-NW was the strongest one in the area, as is pointed out by structural data, and the maximum principal stress σ1 of event E5-NNE is partially concordant with the orientation of σH-max of well break-out data in the Paraná Basin, suggesting a Neotectonic activity for this event. Finally, discontinuities parallel and correlated to the directions of strike–slip faults of the Cenozoic events seem to have actively controlled the sculpturing of the relief in the study area.  相似文献   
44.
Tomographic images of mantle structure beneath the region north and northeast of Australia show a number of anomalously fast regions. These are interpreted using a recent plate tectonic reconstruction in terms of current and former subduction systems. Several strong anomalies are related to current subduction. The inferred slab lengths and positions are consistent with Neogene subduction beneath the New Britain and Halmahera arcs, and at the Tonga and the New Hebrides trenches where there has been rapid rollback of subduction hinges since about 10 Ma. There are several deeper flat-lying anomalies which are not related to present subduction and we interpret them as former subduction zones overridden by Australia since 25 Ma. Beneath the Bird’s Head and Arafura Sea is an anomaly interpreted to be due to north-dipping subduction beneath the Philippines-Halmahera arc between 45 and 25 Ma. A very large anomaly extending from the Papuan peninsula to the New Hebrides, and from the Solomon Islands to the east Australian margin, is interpreted to be the remnant of south-dipping subduction beneath the Melanesian arc between 45 and 25 Ma. This interpretation implies that a flat-lying slab can survive for many tens of millions of years at the bottom of the upper mantle. In the lower mantle there is a huge anomaly beneath the Gulf of Carpentaria and east Papua New Guinea. This is located above the position where the tectonic model interprets a change in polarity of subduction from north-dipping to south-dipping between 45 and 25 Ma. We suggest this deep anomaly may be a slab subducted beneath eastern Australian during the Cretaceous, or subducted north of Australia during the Cenozoic before 45 Ma. The tomography also supports the tectonic interpretation which suggests little Neogene subduction beneath western New Guinea since no slab is imaged south of the New Guinea trench. However, one subduction zone in the tectonic model and many others, that associated with the Trobriand trough east of Papua New Guinea and the Miocene Maramuni arc, is not seen in the tomographic images and may require reconsideration of currently accepted tectonic interpretations.  相似文献   
45.
Positive tectonic inversion is related to the transmission of compressional stresses along a décollement into the foreland of an orogenic zone. This stress and strain concentration in regions remote from the main orogenic front is commonly related to the presence of pre-existing rheological heterogeneities such as normal syn-depositional faults. During inversion, these pre-existing normal faults are reactivated as reverse faults. Tectonic inversion in the Rhenohercynian fold-and-thrust belt during the Variscan Orogeny shows that inversion is likely synchronous with the onset of collision in the hinterland. Here, we present the results of a simplified thermo-mechanical model (STM) which allows one to study strain partitioning between two orogenic zones. We show that, if the two orogenic zones have the same mechanical properties, the viscosity of the décollement, which links them, controls the initial strain partitioning. During subsequent finite shortening, erosional processes determine the partitioning of strain rate. The presence of a weak structure in the inverted zone and of a low-viscosity décollement leads to initial strain concentration in the inverted track rather than in the collision zone and a progressive decrease in strain partitioning between the two orogenic zones. The STM results are in good agreement with results of a 2D finite-element model. We conclude that, in the western part of the Rhenohercynian Massif, simultaneous uplift and deformation within the Mid-German Crystalline Rise (the main collision zone) and the Ardenne Anticlinorium (the inverted zone) lead to interpreting this orogenic event as a case of vice tectonic rather than the propagation of a ‘wave of folding’ towards the Variscan front, as suggested by previous authors.  相似文献   
46.
华北板内深部构造   总被引:9,自引:0,他引:9  
华北板块的形成经历了早前寒武纪、燕山期及喜马拉雅期3个主要构造发展期,由于华北板块自身运动及所受应力场的作用,加之上地幔岩石圈的不均一性等因素,在中、新生代形成许多特殊的板内构造块。综合应用地质、地球物理和地球化学的成果,对华北板内深部结构进行了研究。从深部构造角度划分出6个金及金金属成矿带、4个金刚石成矿带,并对华北地区的地震及地热资源与新生事大陆裂谷的关系进行了探讨。  相似文献   
47.
The Granada Basin (Central Betic Cordillera), one of the most seismically active areas of the Iberian Peninsula, is currently subjected to NW-SE compression and NE-SW extension. The present day extension is accommodated by normal faults with various orientations but particularly with a NW-SE strike. At the surface, these active NW-SE normal faults are mainly concentrated on the NE part of the Basin. In this part we have selected a 15-km long segment where several active normal faults crop out. Using the marine Tortonian rocks as a reference, we have calculated a minimum extensional rate of 0.15-0.30 mm/year. The observed block rotation, the listric geometry of faults at depth and the distribution of seismicity over the whole Basin, indicate that this rate is a minimum value. In the framework of an interdisciplinary research project a non-permanent GPS-network has been established in the central sector of Betic Cordillera to monitor the crustal deformations. The first two observation campaigns were done in 1999 and 2000.  相似文献   
48.
49.
50.
. Three transgressive–regressive 2nd-order cycles were identified in the Upper Aptian–Albian fluvial and marine deposits of the Lusitanian Basin. Its widespread nature, probably including eustatic origin, allows correlation between the southern package, with precise stratigraphic positioning, and the northern series with a poorly constrained age. The main unconformities can be related to the onset of an oceanic crust, in the western margin of Galicia during the Late Aptian, in the bay of Biscay during the Early Albian, and, to the northwest of the Galicia triple point, during the Middle to Late Albian transition, and, at the Albian–Cenomanian boundary, to a probable compressive event with Africa due to the rotation of Iberia. To cite this article: J. Dinis et al., C. R. Geoscience 334 (2002) 757–764.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号