首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   41篇
  国内免费   178篇
大气科学   158篇
地球物理   26篇
地质学   248篇
海洋学   21篇
天文学   1篇
综合类   11篇
自然地理   57篇
  2024年   6篇
  2023年   9篇
  2022年   13篇
  2021年   14篇
  2020年   20篇
  2019年   15篇
  2018年   17篇
  2017年   25篇
  2016年   18篇
  2015年   23篇
  2014年   23篇
  2013年   31篇
  2012年   25篇
  2011年   33篇
  2010年   33篇
  2009年   33篇
  2008年   28篇
  2007年   16篇
  2006年   19篇
  2005年   17篇
  2004年   13篇
  2003年   11篇
  2002年   15篇
  2001年   10篇
  2000年   8篇
  1999年   6篇
  1998年   12篇
  1997年   9篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1986年   2篇
  1973年   1篇
排序方式: 共有522条查询结果,搜索用时 31 毫秒
41.
Pavement snow and icing are worldwide problems, but effective countermeasures are just beginning to be developed in China. The two most common snow and ice removal methods are mechanical clearance and chemical melting, and the advantages and disadvantages of each approach are discussed here, including environmental and structural damage caused by corrosive snow melting agents. New developments in chemical melting agents and mechanical equipment are discussed, and an overview of alternative thermal melting systems is presented, including the use of geothermy and non-geothermal heating systems utilizing solar energy, electricity, conductive pavement materials, and infrared/microwave applications. Strategic recommendations are made for continued enhancement of public safety in snow and ice conditions.  相似文献   
42.
The concentration of ice nuclei (IN) and the relationship with aerosol particles were measured and analyzed using three 5-L mixing cloud chambers and a static diffusion cloud chamber at three altitudes in the Huangshan Mountains in Southeast China from May to September 2011.The results showed that the mean total number concentration of IN on the highest peak of the Huangshan Mountains at an activation temperature (Ta) of-20℃C was 16.6 L-1.When the supersaturation with respect to water (Sw) and with respect to ice (Si) were set to 5%,the average number concentrations of IN measured at an activation temperature of-20℃C by the static diffusion cloud chamber were 0.89 and 0.105 L-1,respectively.A comparison of the concentrations of IN at three different altitudes showed that the concentration of IN at the foot of the mountains was higher than at the peak.A further calculation of the correlation between IN and the concentrations of aerosol particles of different size ranges showed that the IN concentration was well correlated with the concentration of aerosol particles in the size range of 1.2-20 μtm.It was also found that the IN concentration varied with meteorological conditions,such as wind speed,with higher IN concentrations often observed on days with strong wind.An analysis of the backward trajectories of air masses showed that low IN concentrations were often related to air masses travelling along southwest pathways,while higher IN concentrations were usually related to those transported along northeast pathways.  相似文献   
43.
液氮冻结条件下岩石孔隙结构损伤试验研究   总被引:2,自引:0,他引:2  
液氮温度极低,约在-195.56-180.44℃之间,当与岩石接触时会对岩石孔隙结构产生损伤。根据这一特点,低温液氮有望作为压裂流体对储层进行压裂改造。为了研究液氮冻结对岩石孔隙结构损伤的影响,选取两种不同砂岩岩样,分别在不同初始含水饱和度条件下进行液氮冻结处理。对冻结前、后的岩样进行孔隙度以及核磁共振测试,得到岩样在冻结前、后的孔隙度、横向弛豫时间T2分布以及T2谱面积变化情况。试验结果表明:液氮冻结会对岩石的孔隙结构产生损伤,损伤程度受到岩性、孔隙度和岩石含水饱和度等因素影响;岩石含水饱和度越大,损伤就越严重,当岩石含水饱和度达到100%时,岩石表面产生了明显裂纹;岩石在液氮冻结下损伤形式主要是微孔隙的发育和扩展,微孔隙的增加会使岩石孔隙结构的连通性增强,甚至会产生新的大尺寸孔隙,从而对孔隙结构造成严重损伤。  相似文献   
44.
近年来冻结施工方法越来越多地使用在城市土木工程施工中,但由于受冻土冻结理论基础的缺失和研究方法的局限,长时间以来人们对冻结法的设计始终没有找到较为理想的方案,参数变量选取遇到很大困难,同时在施工阶段没有较为标准统一的技术规范参照,使得该工法的实际应用往往出现工程量浪费、施工混乱和工程质量无保障等情况,而其中冷冻管直径是主要影响参数。通过同轴管土体冻结试验的研究,采用不同直径的冷冻管进行冻结试验,利用Fluent模型分析冻结过程的温度场分布规律,确定了最优冷冻管管径的选择方法,为冻结法的设计及施工提供依据。  相似文献   
45.
Dynamic characteristics of heavy-haul railway subgrade under vibratory loading in cold regions are investigated via low-temperature dynamic triaxial tests with multi-stage cyclic loading process. The relationship between dynamic shear stress and dynamic shear strain of frozen soil of subgrade under train loading and the influence of freezing temperatures on dynamic constitutive relation, dynamic shear modulus and damping ratio are observed in this study. Test results show that the dynamic constitutive relations of the frozen soils with different freezing temperatures comply with the hyperbolic model, in which model parameters a and b decrease with increasing freezing temperature. The dynamic shear modulus of the frozen soils decreases with increasing dynamic shear strains initially, followed by a relatively smooth attenuation tendency, whereas increases with decreasing freezing temperatures. The damping ratios decrease with decreasing freezing temperatures. Two linear functions are defined to express the linear relationships between dynamic shear modulus (damping ratio) and freezing temperature, respectively, in which corresponding linear coefficients are obtained through multiple regression analysis of test data.  相似文献   
46.
The methods used in an earlier study focusing on the province of Ontario, Canada, were adapted for this current study to expand the study area over eastern Canada where the infrastructure is at risk of being impacted by freezing rain. To estimate possible impacts of climate change on future freezing rain events, a three-step process was used in the study: (1) statistical downscaling, (2) synoptic weather typing, and (3) future projections. A regression-based downscaling approach, constructed using different regression methods for different meteorological variables, was used to downscale the outputs of eight general circulation models to each of 42 hourly observing stations over eastern Canada. Using synoptic weather typing (principal components analysis, a clustering procedure, discriminant function analysis), the freezing rain-related weather types under historical climate (1958–2007) and future downscaled climate conditions (2016–2035, 2046–2065, 2081–2100) were identified for all selected stations. The potential changes in the frequency of future daily freezing rain events can be projected quantitatively by comparing future and historical frequencies of freezing rain-related weather types.

The modelled results show that eastern Canada could experience more freezing rain events late this century during the coldest months (i.e., December to February) than the averaged historical conditions. Conversely, during the warmest months of the study season (i.e., November and April in the southern regions, October in the northern regions), eastern Canada could experience less freezing rain events late this century. The increase in the number of daily freezing rain events in the future for the coldest months is projected to be progressively greater from south to north or from southwest to northeast across eastern Canada. The relative decrease in magnitude of future daily freezing rain events in the warmest months is projected to be much less than the relative increase in magnitude in the coldest months.  相似文献   
47.
Abstract

Synthetic Aperture Radar (SAR) data has become an important tool for studies of polar regions, due to high spatial resolution even during the polar night and under cloudy skies. We have studied the temporal variation of sea and land ice backscatter of twenty‐four SAR images from the European Remote Sensing satellite (ERS‐1) covering an area in Lady Ann Strait and Jones Sound, Nunavut, from January to March 1992. The presence of fast ice in Jones Sound and glaciers and ice caps on the surrounding islands provides an ideal setting for temporal backscatter studies of ice surfaces. Sample regions for eight different ice types were selected and the temporal backscatter variation was studied. The observed backscatter values for each ice type characterize the radar signatures of the ice surfaces. This time series of twenty‐four SAR images over a 3‐month period provides new insights into the degree of temporal variability of each surface. Ice caps exhibit the highest backscatter value of ‐3.9 dB with high temporal variability. Valley glacier ice backscatter values decrease with decreasing altitude, and are temporally the most stable, with standard deviations of 0.08–0.10 dB over the 90‐day period.

First‐year ice and lead ice show a negative trend in backscatter values in time and a positive correlation of up to 0.59 with air temperature over the 90‐day period. For first‐year ice and lead ice, episodes of large temperature fluctuations (±12°C) are associated with rapid changes in backscatter values (±2 dB). We attribute the backscatter increase to a temperature‐induced increase in brine volume at the base of the snow pack. Multi‐year ice, conglomerate ice and shore ice are relatively stable over the 3‐month period, with a backscatter variation of only a few dBs. An observed lag time of up to three days between backscatter increase/decrease and air temperature can be attributed to the insulation effect of the snow cover over sea ice. The net range of the backscatter values observed on the most temporally stable surface, valley glacier ice, of about 0.30 dB indicates that the ERS‐1 SAR instrument exceeds the 1 dB calibration accuracy specified for the Alaska SAR Facility processor for the three winter months.  相似文献   
48.
The influence of freezing drizzle on wire icing during freezing fog events   总被引:2,自引:0,他引:2  
Both direct and indirect effects of freezing drizzle on ice accretion were analyzed for ten freezing drizzle events during a comprehensive ice thickness, fog, and precipitation observation campaign carried out during the winter of 2008 and 2009 at Enshi Radar Station (3017'N, 10916'E), Hubei Province, China. The growth rate of ice thickness was 0.85 mm h-1 during the freezing drizzle period, while the rate was only 0.4 mm h-1 without sleet and freezing drizzle. The rain intensity, liquid water content (LWC), and diameter of freezing drizzle stayed at low values. The development of microphysical properties of fog was suppressed in the freezing drizzle period. A threshold diameter (Dc) was proposed to estimate the inuence of freezing drizzle on different size ranges of fog droplets. Fog droplets with a diameter less thanDc would be affected slightly by freezing drizzle, while larger fog droplets would be affected signicantly. Dc had a correlation with the average rain intensity, with a correlation coefficient of 0.78. The relationships among the microphysical properties of fog droplets were all positive when the effect of freezing drizzle was weak, while they became poor positive correlations, or even negative correlations during freezing drizzle period. The direct contribution of freezing drizzle to ice thickness was about 14.5%. Considering both the direct and indirect effects, we suggest that freezing drizzle could act as a catalyst causing serious icing conditions.  相似文献   
49.
The common practice of freezing sediment cores for later chemical investigation was shown to be inappropriate for samples containing selenium. Pore waters from frozen estuarine sediment cores contained up to eighty times the selenium content of those extracted from chilled but unfrozen cores. Experiments suggested that the increase in selenium concentrations resulted from rupturing the cells of selenium-accumulating bacteria present in the samples.  相似文献   
50.
Debris in basal ice produced by glaciohydraulic supercooling is typically characterized by high proportions of silt. A prominent hypothesis for this silt‐dominance is that frazil ice growing in supercooled water preferentially traps silt from sediment‐laden water percolating through it. It has therefore been suggested that silt‐dominance may be diagnostic of glaciohydraulic supercooling. The aim of our work is to test this hypothesis that freezing sediment‐laden supercooled water necessarily produces ice dominated by silt. We do this by simulating two freezing processes under laboratory conditions: (1) percolation of sediment‐laden water through frazil ice; (2) turbulent supercooling and subsequent freezing of sediment‐laden water. In experiments repeated using different particle sizes (sand, silt and clay in individual experiments) both processes entrained sand most effectively and silt least effectively. In experiments using a sediment mixture dominated by medium to coarse silt, both processes produced ice facies dominated by particle sizes between fine sand and coarse silt. These results suggest that silt‐dominance should therefore not be expected for supercooled freeze‐on, and is not a reliable diagnostic signature for supercooling. The silt‐dominated character of basal ice types associated with supercooling may result from other controls such as a silt‐dominated sediment supply or subglacial water flow rates, rather than the freezing process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号