首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11985篇
  免费   1906篇
  国内免费   1941篇
测绘学   2118篇
大气科学   846篇
地球物理   3277篇
地质学   6014篇
海洋学   1428篇
天文学   53篇
综合类   878篇
自然地理   1218篇
  2024年   52篇
  2023年   99篇
  2022年   356篇
  2021年   542篇
  2020年   540篇
  2019年   608篇
  2018年   477篇
  2017年   568篇
  2016年   569篇
  2015年   645篇
  2014年   759篇
  2013年   893篇
  2012年   782篇
  2011年   777篇
  2010年   661篇
  2009年   710篇
  2008年   773篇
  2007年   804篇
  2006年   770篇
  2005年   682篇
  2004年   534篇
  2003年   450篇
  2002年   394篇
  2001年   363篇
  2000年   318篇
  1999年   314篇
  1998年   290篇
  1997年   206篇
  1996年   180篇
  1995年   150篇
  1994年   126篇
  1993年   124篇
  1992年   96篇
  1991年   46篇
  1990年   43篇
  1989年   24篇
  1988年   36篇
  1987年   16篇
  1986年   8篇
  1985年   17篇
  1984年   16篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
891.
This study addresses the influence of landslide dams on surface water drainage and groundwater flow. In the study area of Scanno Lake and Sagittario River (Central Italy), a limestone rockslide‐avalanche formed a lake, which has an outlet that is occasionally active, showing infiltration into the rockslide dam. Several springs are present at the lake's base and are partly fed by seepage through the rockslide debris. Piezometric surveys, discharge measurements, pumping tests and chemical analyses are tools used to build a conceptual model of the groundwater flow and to evaluate the flow through the rockslide debris. Seasonal water isotopic signatures validate the assumed model, showing a mixing of infiltration recharge and groundwater seepage throughout the rockslide debris. Various recharge areas have been found for springs, pointing out those directly fed by the rockslide debris aquifer. Hypotheses about seasonal groundwater mixing between the regional carbonate aquifer and the rockslide debris aquifer are supported by isotope results. Seasonal changes in groundwater table level due to recharge and surface losses from seasonal outlet have been correlated with isotopic groundwater composition from the rockslide debris aquifer and the downstream springs; this relationship highlights the role of the rockslide dam body on the hydrodynamics of the studied area. Relationships between surface waters and groundwater in the area have been completely understood on the basis of water isotopic fingerprinting, finally obtaining a complete evaluation of groundwater renewable resources and its regimen. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
892.
J. Van de Wauw  P.A. Finke 《水文研究》2012,26(20):3003-3011
The predictive quality of the current drainage class map of Flanders was evaluated using data from two monitoring networks: one with good spatial coverage but poor temporal coverage and another with better temporal but poor spatial coverage. We combine both networks to obtain 1678 point predictions for mean highest water (MHW) and mean lowest water (MLW) tables by applying time series modelling and total least squares regression. The resulting MHW and MLW point data set was used to evaluate the currency of the existing map and to identify regional differences. The quality of the current map is moderate, and large differences occur between regions. Especially the Campine region shows large and systematic differences, whereas the southeastern hills and chalk–loam region is relatively accurate. If more weight is given to errors in the wetter drainage classes, about 50% of the area of Flanders would benefit from remapping. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
893.
Exchange of groundwater and lake water with typically quite different chemical composition is an important driver for biogeochemical processes at the groundwater‐lake interface, which can affect the water quality of lakes. This is of particular relevance in mine lakes where anoxic and slightly acidic groundwater mixes with oxic and acidic lake water (pH < 3). To identify links between groundwater‐lake exchange rates and acid neutralization processes in the sediments, exchange rates were quantified and related to pore‐water pH, sulfate and iron concentrations as well as sulfate reduction rates within the sediment. Seepage rates measured with seepage meters (?2.5 to 5.8 L m‐2 d‐1) were in reasonable agreement with rates inverted from modeled chloride profiles (?1.8 to 8.1 L m‐2 d‐1). Large‐scale exchange patterns were defined by the (hydro)geologic setting but superimposed by smaller scale variations caused by variability in sediment texture. Sites characterized by groundwater upwelling (flow into the lake) and sites where flow alternated between upwelling and downwelling were identified. Observed chloride profiles at the alternating sites reflected the transient flow regime. Seepage direction, as well as seepage rate, were found to influence pH, sulfate and iron profiles and the associated sulfate reduction rates. Under alternating conditions proton‐consuming processes, for example, sulfate reduction, were slowed. In the uppermost layer of the sediment (max. 5 cm), sulfate reduction rates were significantly higher at upwelling (>330 nmol g‐1 d‐1) compared to alternating sites (<220 nmol g‐1 d‐1). Although differences in sulfate reduction rates could not be explained solely by different flux rates, they were clearly related to the prevailing groundwater‐lake exchange patterns and the associated pH conditions. Our findings strongly suggest that groundwater‐lake exchange has significant effects on the biogeochemical processes that are coupled to sulfate reduction such as acidity retention and precipitation of iron sulfides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
894.
This work addresses the linear dynamics underlying the formation of density interfaces at the periphery of energetic vortices, well outside the vortex core, both in the radial and axial directions. We compute numerically the unstable modes of an anticyclonic Gaussian vortex lens in a continuously stratified rotating fluid. The most unstable mode is a slow mode, associated with a critical layer instability located at the vortex periphery. Although the most unstable disturbance has a characteristic vertical scale which is comparable to the vortex height, interestingly, the critical levels of the successively fastest growing modes are closely spaced at intervals along the axial direction that are much smaller than the vortex height.  相似文献   
895.
Based on the theory of gravity‐driven groundwater flow systems, we have developed a complex Flow System Sand‐Box Model (FSM). It enables the visual observations of the development and characteristics and temporal evolution of complex Tóthian flow systems in the laboratory. The configuration of the regional, intermediate and local flow systems can be controlled and observed; hydraulic head, flow direction and travel time can be measured; and the scale and shape of the sub‐flow systems as well as the path lines and flow lines can be observed directly. The experiments demonstrate the Tóthian flow systems in a small basin with multiple sources and sinks. Greater local topographic (water table) undulation will lead to larger local flow systems. Greater regional and less local topographic undulation will enhance the development of intermediate and regional flow systems. In homogeneous media, increasing fluid‐potential differences between source and sink increase the spatial scale of the generated flow systems. The FSM is a useful teaching aid and experimental device to study and develop an intuitive insight into gravity‐driven groundwater flow systems. It helps to visualize and understand the hydraulic properties and controlling factors of Tóthian flow systems and may be used to study problems related to the chemical and temperature characteristics of the flow systems as well. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
896.
Abstract

A numerical technique is presented whereby aquifer hydraulic diffusivities (D) and macrodispersivities (α) are calculated by linear equations rewritten from flow and solute transport differential equations. The approach requires a GIS to calculate spatial and temporal hydraulic head (h) and solute concentration gradients. The model is tested in Portugal, in a semi-confined aquifer periodically monitored for h and chloride/sulphate concentrations. Average D (0.46 m2/s) and α (1975 m) compare favourably with literature results. The relationship between α and scale (L) is also investigated. In this context, two aquifer groups could be identified: the first group is heterogeneous at the “macroscopic” scale (solute travelled distances <1 km), but homogeneous at the “megascopic” scale. The overall scale dependency in this case is given by an equation of logarithmic type. The second group is heterogeneous at the macroscopic and megascopic scales, with a scale dependency of linear type.

Citation Pacheco, F.A.L., 2013. Hydraulic diffusivity and macrodispersivity calculations embedded in a geographic information system. Hydrological Sciences Journal, 58 (4), 930–944.  相似文献   
897.
898.
The Kaluvelly watershed is a coastal area (Tamil Nadu, India) where water abstraction has resulted in a dramatic fall in the level of the water table and a piezometric depression in the most exploited aquifer, the Vanur aquifer. In addition, intensification/mechanization of agriculture may have affected the quality of recharge water. An initial hydrodynamic study showed that the Vanur aquifer is highly vulnerable to salinization due to potential seawater intrusion, and our aim was to determine the source of salinity recorded in the groundwater of this multilayered aquifer. Our approach involved the use of existing boreholes and of a moderate number of samples, with the aim of developing appropriate water resource management techniques. Major element, 18O/16O, 2H/1H and 87Sr/86Sr, ratios were measured in rainwater, surface water and groundwater collected during five sampling campaigns over a 2‐year period. Geochemical data indicate that the Vanur aquifer is recharged and that small mixings between aquifers fluctuate according to monsoon intensity. There was no evidence of seawater intrusion. The range of recorded salinity originated mainly from water–rock interaction but a disconnection of some deeper parts of the aquifer was apparent. Strontium isotopic ratios in the recharge area suggest an anthropogenic influence, possibly related to fertilizer use. A high SO4/Cl ratio was observed in the aquifer; in the deeper parts, the influence of a formation containing lignite is hypothesized, whereas near the surface, sulphate may partly originate from fertilizer use and fossil fuel combustion. Water isotopic data suggest that the origin of precipitation in this region has been unchanged for several hundreds or thousands of years. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
899.
Abstract

Knowledge of the hydrochemical dynamics of the trace metal manganese (Mn) in upland catchments is required for water quality management. Stream water Mn and other solutes and flow were monitored in two upland catchments in northern England with different soils: one dominated by peat (HS7), the other by mineral soils (HS4). Maximum Mn concentrations occurred at different times in the two catchments: in summer baseflow at HS4 and during late summer storm events at HS7. A two-component chemical mixing model was used to identify the hydrological processes controlling Mn concentrations in stream water. This approach was more successful for HS4 than HS7, probably because of different processes of Mn release in the two catchments and also difficulties in selecting conservative solutes. Factor analysis of the stream water chemistry data set for each catchment was more useful in identifying the controls on Mn release into runoff. The factors indicate that the main source of Mn at HS4 is the hydrological pathway supplying summer baseflow, whereas at HS7 Mn is released during the rewetting of dried peat soils. Manganese concentrations in stream water in upland catchments appear to depend on soil type and antecedent moisture conditions. This has implications for the design of sampling strategies in upland catchments and also for managing the quality of water supplies from such areas.  相似文献   
900.
The lower coastal plain of the Southeast USA is undergoing rapid urbanisation as a result of population growth. Land use change has been shown to affect watershed hydrology by altering stream flow and, ultimately, impairing water quality and ecologic health. However, because few long‐term studies have focused on groundwater–surface water interactions in lowland watersheds, it is difficult to establish what the effect of development might be in the coastal plain region. The objective of this study was to use an innovative improvement to end‐member mixing analysis (EMMA) to identify time sequences of hydrologic processes affecting storm flow. Hydrologic and major ion chemical data from groundwater, soil water, precipitation and stream sites were collected over a 2‐year period at a watershed located in USDA Forest Service's Santee Experimental Forest near Charleston, South Carolina, USA. Stream flow was ephemeral and highly dependent on evapotranspiration rates and rainfall amount and intensity. Hydrograph separation for a series of storm events using EMMA allowed us to identify precipitation, riparian groundwater and streambed groundwater as main sources to stream flow, although source contribution varied as a function of antecedent soil moisture condition. Precipitation, as runoff, dominated stream flow during all storm events while riparian and streambed groundwater contributions varied and were mainly dependent on antecedent soil moisture condition. Sensitivity analyses examined the influence of 10% and 50% increases in analyte concentration on EMMA calculations and found that contribution estimates were very sensitive to changes in chemistry. This study has implications on the type of methodology used in traditional forms of EMMA research, particularly in the recognition and use of median end‐member water chemistry in hydrograph separation techniques. Potential effects of urban development on important hydrologic processes (groundwater recharge, interflow, runoff, etc.) that influence stream flow in these lowland watersheds were qualitatively examined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号