首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4145篇
  免费   1160篇
  国内免费   2152篇
测绘学   100篇
大气科学   3309篇
地球物理   584篇
地质学   2106篇
海洋学   607篇
天文学   32篇
综合类   218篇
自然地理   501篇
  2024年   40篇
  2023年   107篇
  2022年   193篇
  2021年   215篇
  2020年   214篇
  2019年   259篇
  2018年   233篇
  2017年   184篇
  2016年   205篇
  2015年   248篇
  2014年   356篇
  2013年   333篇
  2012年   371篇
  2011年   372篇
  2010年   307篇
  2009年   349篇
  2008年   425篇
  2007年   431篇
  2006年   428篇
  2005年   335篇
  2004年   269篇
  2003年   235篇
  2002年   167篇
  2001年   180篇
  2000年   158篇
  1999年   144篇
  1998年   132篇
  1997年   113篇
  1996年   100篇
  1995年   74篇
  1994年   76篇
  1993年   70篇
  1992年   38篇
  1991年   35篇
  1990年   10篇
  1989年   12篇
  1988年   16篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有7457条查询结果,搜索用时 15 毫秒
61.
The Taojiang Mn ore deposit was exploited in the early 1960s, and waste rocks were developed since then. Because the Mn ores were hosted within the metal-enriched black shales (Peng et al., 2004), the continuous mining has led to the exposure of an immense quality of black shales, which might cause serious impacts on environments. The present study deals with this environmental issue with samples from the waste rocks, and from the surrounding soils and surface water. The mineralogy of the waste rock was studied using EMPA, then a large number of elements in all waste rock, soil, and water samples were analyzed at a wide range of concentrations with high accuracy using an Elan6000 ICP-MS machine at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. The waste rock is composed mostly of black shales, with minor Mn carbonates. Both black shales and Mn carbonates of the waste rock contain many sulfide minerals, mainly pyrite, with minor galena, sphalerite, chalcopyrite, and others. The waste rocks are enriched in many metals including Sc, V, Cr, Co, Ni, Fe, Mn, Cu, Zn, Pb, Th, U, Mo, Sb, Sn, Tl, and others, and the metals are mostly hosted within the sulfides. Weathering of waste rocks might cause emission of the following metals: V, Cd, Ni, Th, U, Mo, Sb, Tl, Sc, Cr, Cu, Zn, Sn, and minor Co, and Pb. The surrounding soils are highly enriched in Cr, Co, Cu, Zn, Mn, Mo, Cd, Tl, and Pb, with the enrichment factors of 2.67.3.8, 7.26, 7.27, 8.2, 5.7, 13, and 5.4, respectively. The element ratios (Rb/Cs, Fe/Mn, Nb/Zr, Hf/Zr, and Ba/Sr) and REE distribution patterns of the soils are similar to those of the waste rocks and bedrocks.  相似文献   
62.
It has been found that stream waters were severely contaminated with wastes from a long-time smelting factory in Hezhang, Guizhou, China. The main sources of contamination are the smelting wastes stored in the open air and abandoned in the vicinity of stream. A method of lead isotope was adopted in order to identify relations between tailings and water contamination. Representative samples of tailings and stream sediments were collected. Mineralogical characterizations were conducted using XRD and TEM/SEM, while acid digestion was carried out for determining metal contents. BCR sequential leaching tests were performed in order to assess metal mobility. The tremendous ‘actual' and ‘potential' mobility of heavy metals indicates that the smelting waste and stream sediments present a considerable threat to the environment. Besides the chemical remobilization of heavy metals from the sediments and the reworking of riverbed sediments act as a secondary source of pollution. Also groundwater and stream water were sampled in specific locations and were measured.  相似文献   
63.
Since industrial revolution, the "greenhouse effect" is one of the most important global environmental issues. Of all the greenhouse gases, CO2 is responsible for about 64% of the enhanced "greenhouse effect", making it the target for mitigation, so reducing anthropogenic discharge of carbon dioxide attracts more and more attention. Geological sequestration of CO2 in deep saline aquifers is one of the most promising options. But because unknown fractures and faults may exist in the caprock layers which can prevent the leakage of CO2, CO2 will leak upward into upper potable aquifers, and lead to adverse impacts on the shallow potable aquifers. In order to assess the potential effect of CO2 leakage from underground storage reservoirs on fractures and water quality of potable aquifers, this study used the non-isothermal reactive geochemical transport code TOUGHREACT developed by Xu et al to establish a simplified 2-D model of CO2 underground sequestration system, which includes deep saline aquifers, caprock layers, and shallow potable aquifers, and study and analyze the changes of mineral and aqueous components. The simulation results indicated that the minerals of deep saline aquifers and fractures should be mainly composed of aluminosilicate and silicate minerals, which not only enhance the mass of CO2 sequestrated by mineral trapping, but also decrease the porosity and permeability of caprock layers and fractures to prevent and reduce CO2 leakage. The results from deep saline aquifers showed that the mass of carbon dioxide trapped by minerals and solution phases is limited, the rest remained as a supercritical phase, and so once the caprock aquifers have some unknown fractures, the free carbon dioxide phase may leak from CO2 geologic sequestration reservoirs by buoyancy.  相似文献   
64.
The black shale formed under anoxic conditions usually contains high concentrations of many metals. Weathering of such black shale might cause the emission of many metals. Moreover, soils derived from black shale (SBS) are believed to be affected by black shale weathering. In recent years, many studies such as Lee et al. (2002), Woo et al. (2002), Fang et al. (2002), Pasava et al. (2003), and Peng et al. (2004) have approached the heavy metal contaminations of SBS, but systematical geochemical study is rare. Presently, the SBS and its corresponding black shales (CBS) were both sampled from central Hunan (China), and analyzed for a large number of elements, using an Elan6000 ICP-MS/AES machine at Guangzhou Institute of Geochemistry, CAS. In this paper, some preliminary results are reported. The analytical results show that the SBS in central Hunan contains very high concentrations of heavy metals such as Co, Cu, Hg, Mo, Pb, Zn, U, Th, Sb, T1, Cd, Cr, Sc, V, Sn, As, Se, and Ni.  相似文献   
65.
Heavy metal contamination in the sediment of the Second Songhua River   总被引:1,自引:0,他引:1  
The Second Songhua River was subjected to a large amount of untreated effluent from petrochemical industries in Jilin City in the 1960s to the 1970s. The objectives of this study were to investigate the mercury and other heavy metal contamination in the sediment of the river. The river bottom sediment was sampled from the river segment between Jilin City to Haerbin City in 2005. Total concentrations of Hg, Cd, Cu, Cr, Pb, Zn, Ni, As, Sc, and major cations (A1, Fe, Mg, Ca, K, Na) in the sediment were measured by atomic fluorescence spectrometer, ICP-MS, and ICP-OES, respectively, following digestion with various acids. We found the concentrations of most elements in the uncontaminated sediment were significantly correlated to those of Sc.  相似文献   
66.
67.
68.
Partly laminated sediments were sampled from the brine-filled, anoxic Shaban Deep basin in the northern Red Sea. At about 4200 cal yr BP more than two millennia of anoxic sedimentation is replaced by a sub-oxic facies strongly suggesting the episodic absence of the brine. At the same time stable oxygen isotopes from surface dwelling foraminifera show a sharp increase (within less than 100 yr) pointing to a strong positive salinity anomaly at the sea surface. This major evaporation event significantly enhanced the renewal of deep water and the subsequent ventilation of the small Shaban Deep basin. The timing and strength of the reconstructed environmental changes around 4200 cal yr BP suggest that this event is the regional expression of a major drought event, which is widely observed in the neighboring regions, and which strongly affected Middle East agricultural civilizations.  相似文献   
69.
The mimetic ocean environment and chemical method were used to research the bioavailability effect of humic acid on five heavy metals in sediment, including Cd, Cu, Zn, Pb and Ni. The sediment was separated into four containers with artificial seawater, and each of them had different concentrations of humic acid. The values of concentrations covered the whole range found in natural sediment (0.1%-10%). According to the 48 hours LC50 of clam and distribution coefficient, metals were added in artificial seawater, and their speciation was determined at first and then after two days' incubation. It was found the bioavailability of heavy metals was reduced in the presence of humic acid. The obvious negative effect on Zn was observed, but the influence on Cd was not remarkable. In addition, the contents of Pb and Ni increased obviously in organic phase, and they are correlative with the concentrations of humic acid.  相似文献   
70.
采集和分析了五通桥区不同功能区和乡镇73个土壤样品,以了解山丘平原过渡区土壤重金属的含量和污染特征。结果表明,重金属的平均含量为Pb32.18mg/kg、Cd0.82mg/kg、Cu28.61mg/kg、Zn108.08mg/kg、Ni32.66mg/kg、Cr72.44mg/kg;与四川土壤背景值相比,Cu、Ni、Cr的含量与之持平,Pb增加了0.11倍,Zn增加了0.32倍,Cd的积累较为严重,比背景值增加了10倍。污染评价结果显示该过渡区存在一定程度的重金属污染问题,不同功能区的污染程度排序为工业区〉生活区〉农业区。Cd在六种元素的土壤污染分担率中占55.46%,是最主要的污染元素;土壤Cd含量与Pb和Zn存在较高的相关性(相关系数为0.525和0.500),表明存在Pb—Cd和Zn—Cd的复合污染。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号