首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19355篇
  免费   4368篇
  国内免费   5728篇
测绘学   2360篇
大气科学   3290篇
地球物理   5560篇
地质学   11493篇
海洋学   2818篇
天文学   453篇
综合类   1559篇
自然地理   1918篇
  2024年   65篇
  2023年   243篇
  2022年   583篇
  2021年   828篇
  2020年   846篇
  2019年   1106篇
  2018年   880篇
  2017年   958篇
  2016年   1021篇
  2015年   1128篇
  2014年   1407篇
  2013年   1370篇
  2012年   1423篇
  2011年   1466篇
  2010年   1284篇
  2009年   1364篇
  2008年   1312篇
  2007年   1455篇
  2006年   1404篇
  2005年   1220篇
  2004年   1112篇
  2003年   941篇
  2002年   757篇
  2001年   677篇
  2000年   667篇
  1999年   610篇
  1998年   585篇
  1997年   494篇
  1996年   423篇
  1995年   321篇
  1994年   333篇
  1993年   254篇
  1992年   217篇
  1991年   152篇
  1990年   111篇
  1989年   146篇
  1988年   92篇
  1987年   62篇
  1986年   30篇
  1985年   24篇
  1984年   10篇
  1983年   8篇
  1982年   14篇
  1981年   5篇
  1980年   11篇
  1979年   2篇
  1978年   6篇
  1977年   3篇
  1971年   1篇
  1954年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
刘林  胡松杰 《天文学报》1996,37(3):285-293
对于改进的Encke方法,选择适当的参考轨道是一个关键.然而,对于人造地球卫星长弧轨道计算,目前所给出的几种参考轨道均需要逐段校正,这将给定轨问题带来附加的复杂性.本文将仔细探讨如何选择参考轨道和减少校正次数.  相似文献   
12.
Stress wave attenuation across fractured rock masses is a great concern of underground structure safety. When the wave amplitude is large, fractures experience nonlinear deformation during the wave propagation. This paper presents a study on normal transmission of P‐wave across parallel fractures with nonlinear deformational behaviour (static Barton–Bandis model). The results show that the magnitude of transmission coefficient is a function of incident wave amplitude, nondimensional fracture spacing and number of fractures. Two important indices of nondimensional fracture spacing are identified, and they divide the area of nondimensional fracture spacing into three parts (individual fracture area, transition area and small spacing area). In the different areas, the magnitude of transmission coefficient has different trends with nondimensional fracture spacing and number of fractures. In addition, the study reveals that under some circumstances, the magnitude of transmission coefficient increases with increasing number of fractures, and is larger than 1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
13.
同时采用4个台站的国际超导重力仪长期连续重力观测资料和国际地球自转服务中心提供的同步地球自转参数,研究了极移引起的地球重力场变化特征。利用自回归模型估计了各序列的功率谱密度和积谱密度,结果表明极移导致的重力效应的主要能量集中在Chandler摆动和周年项附近,叠积后实际重力观测与极移重力信号理论值之间的差异分别为0.4%和3.9%,说明超导重力仪可有效监测极移导致的重力变化。  相似文献   
14.
An elastoplastic model for sands is presented in this paper, which can describe stress–strain behaviour dependent on mean effective stress level and void ratio. The main features of the proposed model are: (a) a new state parameter, which is dependent on the initial void ratio and initial mean stress, is proposed and applied to the yield function in order to predict the plastic deformation for very loose sands; and (b) another new state parameter, which is used to determine the peak strength and describe the critical state behaviour of sands during shearing, is proposed in order to predict simply negative/positive dilatancy and the hardening/softening behaviour of medium or dense sands. In addition, the proposed model can also predict the stress–strain behaviour of sands under three-dimensional stress conditions by using a transformed stress tensor instead of ordinary stress tensor. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
15.
A new technique designed to help quantify the degree of damage to the landscape from one area to another shows a close relationship between population density and the degree of landscape damage. The technique establishes a scale of damage from 0 to 5 (zero = no damage; 5 = severe damage) using data from aerial photographs, land-use maps, and field data. The related formula allows one to compare the relative degree of damage across regions using a combination of an absolute index, a theoretical index, a relative index, and population density. Xing'an County is used to demonstrate the technique.  相似文献   
16.
We have developed a method for analytically solving the porous medium flow equation in many different geometries for horizontal (two‐dimensional), homogeneous and isotropic aquifers containing impermeable boundaries and any number of pumping or injection wells located at arbitrary positions within the system. Solutions and results are presented for rectangular and circular aquifers but the method presented here is easily extendible to many geometries. Results are also presented for systems where constant head boundary conditions can be emulated internal to the aquifer boundary. Recommendations for extensions of the present work are briefly discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
17.
The finite‐element formulation and integration algorithms developed in Part I are used to analyse a number of practical problems involving unsaturated and saturated soils. The formulation and algorithms perform well for all the cases analysed, with the robustness of the latter being largely insensitive to user‐defined parameters such as the number of coarse time steps and error control tolerances. The efficiency of the algorithms, as measured by the CPU time consumed, does not depend on the number of coarse time steps, but may be influenced by the error control tolerances. Based on the analyses presented here, typical values for the error control tolerances are suggested. It is also shown that the constitutive modelling framework presented in Part I can, by adjusting one constitutive equation and one or two material parameters, be used to simulate soils that expand or collapse upon wetting. Treating the suction as a strain variable instead of a stress variable proves to be an efficient and robust way of solving suction‐dependent plastic yielding. Moreover, the concept of the constitutive stress is a particularly convenient way of handling the transition between saturation and unsaturation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
18.
The response of an ideal elastic half‐space to a line‐concentrated impulsive vector shear force applied momentarily is obtained by an analytical–numerical computational method based on the theory of characteristics in conjunction with kinematical relations derived across surfaces of strong discontinuities. The shear force is concentrated along an infinite line, drawn on the surface of the half‐space, while being normal to that line as well as to the axis of symmetry of the half‐space. An exact loading model is introduced and built into the computational method for this shear force. With this model, a compatibility exists among the prescribed applied force, the geometric decay of the shear stress component at the precursor shear wave, and the boundary conditions of the half‐space; in this sense, the source configuration is exact. For the transient boundary‐value problem described above, a wave characteristics formulation is presented, where its differential equations are extended to allow for strong discontinuities which occur in the material motion of the half‐space. A numerical integration of these extended differential equations is then carried out in a three‐dimensional spatiotemporal wavegrid formed by the Cartesian bicharacteristic curves of the wave characteristics formulation. This work is devoted to the construction of the computational method and to the concepts involved therein, whereas the interpretation of the resultant transient deformation of the half‐space is presented in a subsequent paper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
19.
A discrete element modelling of bonded granulates and investigation on the bond effect on their behaviour are very important to geomechanics. This paper presents a two‐dimensional (2‐D) discrete element theory for bonded granulates with bond rolling resistance and provides a numerical investigation into the effect of bond rolling resistance on the yielding of bonded granulates. The model consists of mechanical contact models and equations governing the motion of bonded particles. The key point of the theory is that the assumption in the original bond contact model previously proposed by the authors (55th CSCE‐ASCE Conference, Hamilton, Ont., Canada, 2002; 313–320; J. Eng. Mech. (ASCE) 2005; 131 (11):1209–1213) that bonded particles are in contact at discrete points, is here replaced by a more reliable assumption that bonded particles are in contact over a width. By making the idealization that the bond contact width is continuously distributed with the normal/tangential basic elements (BE) (each BE is composed of spring, dashpot, bond, slider or divider), we establish a bond rolling contact model together with bond normal/tangential contact models, and also relate the governing equations to local equilibrium. Only one physical parameter β needs to be introduced in the theory in comparison to the original bond discrete element model. The model has been implemented into a 2‐D distinct element method code, NS2D. Using the NS2D, a total of 86 1‐D, constant stress ratio, and biaxial compressions tests have been carried out on the bonded granular samples of different densities, bonding strengths and rolling resistances. The numerical results show that: (i) the new theory predicts a larger internal friction angle, a larger yielding stress, more brittle behaviour and larger final broken contact ratio than the original bond model; (ii) the yielding stress increases nonlinearly with the increasing value of β, and (iii) the first‐yield curve (initiation of bond breakage), which define a zone of none bond breakage and which shape and size are affected by the material density, is amplified by the bond rolling resistance in analogous to that predicted by the original bond model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
20.
It is well known that the Babuska–Brezzi stability criterion or the Zienkiewicz–Taylor patch test precludes the use of the finite elements with the same low order of interpolation for displacement and pore pressure in the nearly incompressible and undrained cases, unless some stabilization techniques are introduced for dynamic analysis of saturated porous medium where coupling occurs between the displacement of solid skeleton and pore pressure. The numerical manifold method (NMM), where the interpolation of displacement and pressure can be determined independently in an element for the solution of up formulation, is derived based on triangular mesh for the requirement of high accurate calculations from practical applications in the dynamic analysis of saturated porous materials. The matrices of equilibrium equations for the second‐order displacement and the first‐order pressure manifold method are given in detail for program coding. By close comparison with widely used finite element method, the NMM presents good stability for the coupling problems, particularly in the nearly incompressible and undrained cases. Numerical examples are given to illustrate the validity and stability of the manifold element developed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号