首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4654篇
  免费   1078篇
  国内免费   1608篇
测绘学   82篇
大气科学   381篇
地球物理   678篇
地质学   5023篇
海洋学   691篇
天文学   62篇
综合类   230篇
自然地理   193篇
  2024年   37篇
  2023年   85篇
  2022年   215篇
  2021年   204篇
  2020年   200篇
  2019年   276篇
  2018年   213篇
  2017年   224篇
  2016年   285篇
  2015年   257篇
  2014年   331篇
  2013年   311篇
  2012年   323篇
  2011年   375篇
  2010年   308篇
  2009年   354篇
  2008年   344篇
  2007年   304篇
  2006年   340篇
  2005年   334篇
  2004年   259篇
  2003年   267篇
  2002年   240篇
  2001年   177篇
  2000年   201篇
  1999年   130篇
  1998年   177篇
  1997年   117篇
  1996年   101篇
  1995年   77篇
  1994年   58篇
  1993年   40篇
  1992年   41篇
  1991年   22篇
  1990年   21篇
  1989年   11篇
  1988年   16篇
  1987年   5篇
  1986年   17篇
  1985年   22篇
  1984年   8篇
  1983年   5篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1954年   1篇
排序方式: 共有7340条查询结果,搜索用时 15 毫秒
191.
The locations of mining-induced horizontal fractures along rock interfaces in the overburden of Donetsk Coal Basin were identified using an original experimental device. The device traps methane from horizontal fracture zone (100–fold coal seam thickness) over an active longwall mining excavation. Presence or absence of horizontal fractures along rock layer interfaces is correlated with physical characteristics of the overburden, such as thickness, uniaxial compressive strength of overburden rock layers, location of rock layer interfaces and thickness of extracted coal seams. As a result, a combined criterion based on these physical characteristics is proposed to predict the presence of overburden horizontal fracturing in coal mine operations.  相似文献   
192.
Stream mesoscale habitats have systematic topographic relationships to hyporheic flow patterns, which may create predictable temperature variation between mesoscale habitat types. We investigated whether systematic differences in temperature metrics occurred between mesoscale habitats within reaches of small streams tributary to the upper Little Tennessee River, southern Appalachians. Surface water temperature was recorded over three or four mid‐summer days in four mesoscale habitat types: riffle, main riffle, pool and alcove in 44 stream segments (sites). Temperature metrics were calculated for each mesoscale habitat relative to the mean value of the metric over the stream: Δ maximum temperature, Δ average maximum temperature and Δ maximum daily variation and also for each site: standard deviation of the maximum temperature and average diurnal variation (ADV). Sites were categorized as fully or partially forested. Pool tailouts had statistically significantly lower Δ maximum temperature and Δ average maximum temperature than riffle tailouts in partially forested sites, although differences were small. This was the opposite of what was expected in the presence of hyporheic exchange, indicating hyporheic exchange is not a dominant driver of mesoscale habitat temperatures at these sites. Temperature differences between mesoscale habitat units were small and unlikely to have ecological significance. We also evaluated relationships between stream temperature and riparian condition, watershed % impervious surfaces, watershed % non‐forested and elevation. ADV and standard deviation of the maximum temperature were significantly higher in partially forested sites, indicating that partially forested sites have greater temperature ranges and spatial variation of maximum temperatures. ADV decreased with elevation and increased with % impervious surfaces. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
193.
In this work, the possible exploitation of fiber-reinforced composites in the context of maritime transportation of compressed natural gas (CNG) is investigated. In addition to a more conventional steel configuration, two different fiber materials, carbon and glass, are considered as construction materials for pressure vessels (PVs) to be stored on board ships, with thickness optimized by FEM analysis.The considered scenario is represented by the transportation of CNG from an offshore well to a terminal on shore. Fleets of ships carrying CNG in pressure vessels manufactured with the investigated materials are generated by means of a ship synthesis model (SSM) software and compared on the basis of technical and economical indicators.The choice of the construction material influences considerably the weight of the PVs, which represent a major item of total ship weight and reflects directly on the general transport performances in terms of resistance, seakeeping and reliability in the service. On the other hand, capital as well as operating expenditures are considerably affected by the choice. When exploring the design space, the ship synthesis model is able, at a preliminary stage of the design, to account for the various technical and economical aspects, their implications and relationships. Results are presented of computations carried out in a specific case, identified by the annual gas production and other characteristics of the well terminal and a cruising route for the ships. The comparison is carried out on the basis of the cost per transported unit of gas and of the percentage of success in the transportation process. The computations show that the choice of the PV material has a key influence on the results in terms of optimal number, dimensions and speed of the ships.  相似文献   
194.
An effective approach to modeling the geomechanical behavior of the network and its permeability variation is to use a poroelastic displacement discontinuity method (DDM). However, the approach becomes rather computationally intensive for an extensive system of cracks, particularly when considering coupled diffusion/deformation processes. This is because of additional unknowns and the need for time‐marching schemes for the numerical integration. The Fast Multipole Method (FMM) is a technique that can accelerate the solution of large fracture problems with linear complexity with the number of unknowns both in memory and CPU time. Previous works combining DDM and FMM for large‐scale problems have accounted only for elastic rocks, neglecting the fluid leak‐off from the fractures into the matrix and its influence on pore pressure and stress field. In this work we develop an efficient geomechanical model for large‐scale natural fracture networks in poroelastic reservoirs with fracture flow in response to injection and production operations. Accuracy and computational performance of the proposed method with those of conventional poroelastic DDM are compared through several case studies involving up to several tens of thousands of boundary elements. The results show the effectiveness of the FMM approach to successfully evaluate field‐scale problems for the design of exploitation strategies in unconventional geothermal and petroleum reservoirs. An example considering faults reveals the impact of reservoir compartmentalization because of sealing faults for both geomechanical and flow variables under elastic and poroelastic rocks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
195.
Amount and composition of dissolved organic matter (DOM) were evaluated for multiple, nested stream locations in a forested watershed to investigate the role of hydrologic flow paths, wetlands and drainage scale. Sampling was performed over a 4‐year period (2008–2011) for five locations with drainage areas of 0.62, 3.5, 4.5, 12 and 79 ha. Hydrologic flow paths were characterized using an end‐member mixing model. DOM composition was determined using a suite of spectrofluorometric indices and a site‐specific parallel factor analysis model. Dissolved organic carbon (DOC), humic‐like DOM and fluorescence index were most sensitive to changes with drainage scale, whereas dissolved organic nitrogen, specific UV absorbance, Sr and protein‐like DOM were least sensitive. DOM concentrations and humic‐like DOM constituents were highest during both baseflow and stormflow for a 3.5‐ha catchment with a wetland near the catchment outlet. Whereas storm‐event concentrations of DOC and humic DOM constituents declined, the mass exports of DOC increased with increasing catchment scale. A pronounced dilution in storm‐event DOC concentration was observed at peak stream discharge for the 12‐ha drainage location, which was not as apparent at the 79‐ha scale, suggesting key differences in supply and transport of DOM. Our observations indicate that hydrologic flow paths, especially during storms, and the location and extent of wetlands in the catchment are key determinants of DOM concentration and composition. This study furthers our understanding of changes in DOM with drainage scale and the controls on DOM in headwater, forested catchments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
196.
For civil engineering structures with a tightness role, structural permeability is a key issue. In this context, this paper presents a new proposition of a numerical modelling of leakage rate through a cracked concrete structure undergoing mode I cracking. The mechanical state of the material, considered in the framework of continuum mechanics based on finite element modelling, is described by means of the stress‐based nonlocal damage model which takes into account the stress state and provides realistic local mechanical fields. A semi‐discrete method based on the strong discontinuity approach to estimate crack opening is then considered in the post‐treatment phase. Using a Poiseuille's like relation, the coupling between the mechanical state of the material and its dry gas conductivity is performed. For validation purposes, an original experimental campaign is conducted on a dry concrete disc loaded in a splitting setup. During the loading, gas conductivity and digital image correlation analysis are performed. The comparison with the 3D experimental mechanical global response highlights the performance of the mechanical model. The comparison between crack openings measured by digital image correlation and estimated by the strong discontinuity method shows a good agreement. Finally, the results of the semi‐discrete approach coupled with the gas conductivity compared with experimental data show a good estimation of the structural conductivity. Consequently, if the mechanical problem is well modelled at the global scale, then the proposed approach provides good estimation of gas conductivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
197.
阿克莫木气田目前已有多口井完钻,各井在钻揭白垩系砂岩储层前,对地层压力纵向上的变化规律认识不清,在什么层位及深度下7″套管意见仍不统一。本文根据目前研究现状和生产面临问题,对白垩系各组地层分布规律、压力特征进行了详细研究,认为白垩系克孜勒苏群、库克拜组分布稳定,压力窗口相近,白垩系东巴组与上覆古近系阿尔塔什组压力窗口相近。建议今后该区钻探7″套管应下至库克拜组顶部-东巴组底部,减少地层漏失和油气勘探风险。  相似文献   
198.
基于雷达资料快速刷新四维变分同化(RR4DVar)初始化的三维数值云模式,利用京津冀6部新一代多普勒天气雷达和区域自动气象站观测资料,针对2013年7月4日出现在京津冀平原地区的中尺度对流系统(MCS),开展了数值临近预报试验。研究结果表明,充分考虑雷达观测信息的对流尺度数值临近预报具有很大的优势,但也存在不足:(1)模式能够较好地把握中尺度对流系统的组织发展和移动演变特征,对风暴回波带的走向和尺度特征有较好的预报,但对强回波的强度和位置预报存在一定偏差;(2)模式预报可以反映风暴系统的中小尺度扰动特征,对风暴冷池和出流边界(阵风锋)的发展变化均有较为合理的预报;(3)模式对强降水中心和雨带位置的预报有很大优势,能较好地预报弱降水雨带的分布形势和雨量,但对强降水落区的预报偏大;(4)模式对风暴造成的对流性强降水的预报准确率较高,对0.5—10 mm阈值的降水范围预报偏差比较合理,对10 mm以上降水范围的预报偏大,但是对弱降水风暴的弱回波较强回波的预报性能要好;(5)由于三维数值云模式对京津冀复杂地形的处理不够完善,对山前风场预报偏差较大,造成对山前风暴的发展演变和山前降水的预报偏差较大。  相似文献   
199.
Both 1981 and 2013 were weak La Niña years with a similar sea surface temperature (SST) anomaly in the tropical Pacific, yet the western Pacific subtropical high (WPSH) during August exhibited an opposite anomaly in the two years. A comparison indicates that, in the absence of a strong SST anomaly in the tropics, the cold advection from Eurasian high latitudes and the convection of the western Pacific warm pool play important roles in influencing the strength and position of the WPSH in August. In August 1981, the spatial pattern of 500 hPa geopotential height was characterized by a meridional circulation with a strong ridge in the Ural Mountains and a deep trough in Siberia, which provided favorable conditions for cold air invading into the lower latitudes. Accordingly, the geopotential height to the north of the WPSH was reduced by the cold advection anomaly from high latitudes, resulting in an eastward retreat of the WPSH. Moreover, an anomalous cyclonic circulation in the subtropical western Pacific, excited by enhanced warm pool convection, also contributed to the eastward retreat of the WPSH. By contrast, the influence from high latitudes was relatively weak in August 2013 due to a zonal circulation pattern over Eurasia, and the anomalous anticyclonic circulation induced by suppressed warm pool convection also facilitated the westward extension of the WPSH. Therefore, the combined effects of the high latitude and tropical circulations may contribute a persistent anomaly of the WPSH in late summer, despite the tropical SST anomaly being weak.  相似文献   
200.
应用常规天气观测资料、地面加密自动气象站资料、大风灾情报资料、京津冀地区7部多普勒天气雷达组网观测资料及VDRAS资料,从多个角度对2013年8月4日京津冀地区一次飑线过程产生的大范围大风天气过程进行了分析,结果显示:此次过程是在高空冷空气南下、低层暖湿气流北上、系统前倾及位势不稳定的有利层结条件下,由多单体风暴演变为中α尺度的强飑线所致。飑线形成于低层垂直切变加强、冷池合并之后;大风主要发生在飑线主体回波中,其次是主体回波前和中前,主体回波后很少发生。大风发生的位置取决于飑线结构中气流的性质,气流的性质与冷池前进的程度和对流的强度关系密切。大风大部分由下沉冷气流产生,少数为近地面上升暖气流导致。大风发生的范围和强度与低层风垂直切变的强度呈正比,大范围低层风垂直切变的加强增强了飑线入流和出流的强度,是大范围大风、局部强风形成的重要原因。大风发生站次与冷池的强度和范围密切相关,冷池的加强和范围的扩大加强了后侧冷入流和前侧暖入流的强度和范围,也是大范围大风形成的重要因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号