首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   33篇
  国内免费   5篇
地球物理   77篇
地质学   48篇
海洋学   9篇
综合类   1篇
自然地理   6篇
  2024年   1篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   1篇
  2014年   6篇
  2013年   5篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   7篇
  2008年   5篇
  2007年   8篇
  2006年   12篇
  2005年   4篇
  2004年   3篇
  2003年   9篇
  2002年   3篇
  2001年   6篇
  2000年   2篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1971年   2篇
排序方式: 共有141条查询结果,搜索用时 468 毫秒
11.
岩体水力学概述   总被引:8,自引:0,他引:8  
本文通过伙在工程活动与地质环境相互作用分析,揭示了人类工程、岩体与地下水之间的关系;论述了岩体水力学的研究对象,学科地位,研究内容以及研究方法。  相似文献   
12.
13.
多股水平淹没射流水力特性的影响因素研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用数值模拟和模型试验相结合的方法,分析了水股分层、坎高、出口体型和跌坎形式等因素对多股水平淹没射流的流态稳定性和水力特性的影响。研究表明,多股多层水平淹没射流较单层多股水平淹没射流流态稳定性好、临底流速低、消能率高,是一种高效的新型消能方式。结合试验结果,提出中孔泄槽以等宽或微收缩为宜、表中孔最优坎高差应大于中孔水流的主流水深、跌坎形式的选择应结合具体工程特点等建议。  相似文献   
14.
One-dimensional Fickian dispersion models such as the advection diffusion equation (ADE) are commonly used to analyse and predict concentration distributions downstream of contamination events in watercourses. Such models are only valid once the tracer had entered the equilibrium zone. This paper compares previous theoretical, experimental and numerical estimates of the distance to reach the equilibrium zone with new experimental values, obtained by examining the change of skewness in a tracer profile, downstream of a cross-sectionally well mixed source. Closer agreement was found with Fischers’ theoretical estimate than prior experimental and numerical studies.  相似文献   
15.
16.
Interrill erosion processes on gentle slopes are affected by mechanisms of raindrop impact, overland flow and their interaction. However, limited experimental work has been conducted to understand how important each of the mechanisms are and how they interact, in particular for peat soil. Laboratory simulation experiments were conducted on peat blocks under two slopes (2.5° and 7.5°) and three treatments: Rainfall, where rainfall with an intensity of 12 mm h?1 was simulated; Inflow, where upslope overland flow at a rate of 12 mm h?1 was applied; and Rainfall + Inflow which combined both Rainfall and Inflow. Overland flow, sediment loss and overland flow velocity data were collected and splash cups were used to measure the mass of sediment detached by raindrops. Raindrop impact was found to reduce overland flow by 10 to 13%, due to increased infiltration, and reduce erosion by 47% on average for both slope gradients. Raindrop impact also reduced flow velocity (80–92%) and increased roughness (72–78%). The interaction between rainfall and flow was found to significantly reduce sediment concentrations (73–85%). Slope gradient had only a minor effect on overland flow and sediment yield. Significantly higher flow velocities and sediment yields were observed under the Rainfall + Inflow treatment compared to the Rainfall treatment. On average, upslope inflow was found to increase erosion by 36%. These results indicate that overland flow and erosion processes on peat hillslopes are affected by upslope inflow. There was no significant relationship between interrill erosion and overland flow, whereas stream power had a strong relationship with erosion. These findings help improve our understanding of the importance of interrill erosion processes on peat. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
17.
以解决挑流消能工在泄洪期间为提高消能率而加重下游雾化问题为目标,探究不同体型挑坎的下游雾化特性。通过水力学模型试验,对典型的非对称舌型坎、标准舌型坎、扭面贴坎和连续坎的下游水舌风分布、下游溅水雨强和不同液滴体积分布以及挑流水舌水力特性与冲刷特性进行了研究。研究表明:①各种工况下,非对称舌型坎、标准舌型坎、扭面贴坎的下游水舌风风速均大于连续坎。②对于非对称舌型坎,其溢洪道轴线左侧溅水强度大于右侧,其雨强左右两侧峰值差值最大为5.625 g/(m 2·min);对于扭面贴坎,其溢洪道轴线右侧溅水强度更大,其雨强左右两侧峰值差值最大为45.125 g/(m 2·min)。③随着距离水舌入水点长度增大,大粒径水滴数量和体积占比均剧烈下降;连续坎和舌型坎的挑宽均随着角度的增加而增加;冲坑深度随着角度的减小而增大。④在挑坎合适边墙侧设置扭面贴角能改善下游雾化危害,同时适当增加挑角可以减弱下游冲刷破坏。  相似文献   
18.
Flow within the interfacial layer of gravel‐bed rivers is poorly understood, but this zone is important because the hydraulics here transport sediment, generate flow structures and interact with benthic organisms. We hypothesized that different gravel‐bed microtopographies generate measurable differences in hydraulic characteristics within the interfacial layer. This was tested using a high density of spatially and vertically distributed, velocity time series measured in the interfacial layers above three surfaces of contrasting microtopography. These surfaces had natural water‐worked textures, captured in the field using a casting procedure. Analysis was repeated for three discharges, with Reynolds numbers between 165000 and 287000, to evaluate whether discharge affected the impact of microtopography on interfacial flows. Relative submergence varied over a small range (3.5 to 8.1) characteristic of upland gravel‐bed rivers. Between‐surface differences in the median and variance of several time‐averaged and turbulent flow parameters were tested using non‐parametric statistics. Across all discharges, microtopographic differences did not affect spatially averaged (median) values of streamwise velocity, but were associated with significant differences in its spatial variance, and did affect spatially averaged (median) turbulent kinetic energy. Sweep and ejection events dominated the interfacial region above all surfaces at all flows, but there was a microtopographic effect, with Q2 and Q4 events less dominant and structures less persistent above the surface with the widest relief distribution, especially at the highest Reynolds number flow. Results are broadly consistent with earlier work, although this analysis is unique because of the focus on interfacial hydraulics, spatially averaged ‘patch scale’ metrics and a statistical approach to data analysis. An important implication is that observable differences in microtopography do not necessarily produce differences in interfacial hydraulics. An important observation is that appropriate roughness parameterizations for gravel‐bed rivers remain elusive, partly because the relative contributions to flow resistance of different aspects of bed microtopography are poorly constrained. © 2014 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
19.
Abstract

An approach is presented for desktop-level environmental flow requirement (EFR) determination that is aligned with the Habitat Flow–Stressor Response (HFSR) method which evolved in South Africa over recent years. The HFSR method integrates hydrological, hydraulic and ecological habitat data, involves ecological and hydraulic specialists and is data-intensive and time-consuming. The revised desktop method integrates hydrological information with estimates of channel hydraulic cross-sectional characteristics to generate habitat-type frequencies under changing flow conditions. This information is used with the expected natural habitat requirements to determine acceptable habitat availability under different levels of ecological protection, which is then used with the hydraulic data to define flow regime characteristics that meet the ecological objectives. The paper describes the model components, discusses the assumptions, data requirements and limitations and presents some example results. The revised desktop approach uses approaches that are aligned with the more complex methods and generates results that are similar.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Hughes, D.A., Desai, A.Y., Birkhead, A.L., and Louw, D., 2014. A new approach to rapid, desktop-level, environmental flow assessments for rivers in South Africa. Hydrological Sciences Journal, 59 (3–4), 673–687.  相似文献   
20.
Concentrated flow is often the dominant source of water erosion following disturbance on rangelands. Because of the lack of studies that explain the hydraulics of concentrated flow on rangelands, cropland‐based equations have typically been used for rangeland hydrology and erosion modeling, leading to less accurate predictions due to different soil and vegetation cover characteristics. This study investigates the hydraulics of concentrated flow using unconfined field experimental data over diverse rangeland landscapes within the Great Basin Region, United States. The results imply that the overall hydraulics of concentrated flow on rangelands differ significantly from those of cropland rills. Concentrated flow hydraulics on rangelands are largely controlled by the amount of cover or bare soil and hillslope angle. New predictive equations for concentrated flow velocity (R2 = 0·47), hydraulic friction (R2 = 0·52), and width (R2 = 0·4) representing a diverse set of rangeland environments were developed. The resulting equations are applicable across a wide span of ecological sites, soils, slopes, and vegetation and ground cover conditions and can be used by physically‐based rangeland hydrology and erosion models to estimate rangeland concentrated flow hydraulic parameters. Published in 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号