首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2996篇
  免费   656篇
  国内免费   671篇
测绘学   159篇
大气科学   456篇
地球物理   1053篇
地质学   1480篇
海洋学   436篇
天文学   99篇
综合类   173篇
自然地理   467篇
  2024年   11篇
  2023年   36篇
  2022年   104篇
  2021年   155篇
  2020年   169篇
  2019年   141篇
  2018年   136篇
  2017年   159篇
  2016年   152篇
  2015年   174篇
  2014年   215篇
  2013年   338篇
  2012年   202篇
  2011年   194篇
  2010年   141篇
  2009年   194篇
  2008年   171篇
  2007年   183篇
  2006年   153篇
  2005年   152篇
  2004年   159篇
  2003年   116篇
  2002年   121篇
  2001年   115篇
  2000年   106篇
  1999年   95篇
  1998年   88篇
  1997年   88篇
  1996年   46篇
  1995年   42篇
  1994年   35篇
  1993年   28篇
  1992年   19篇
  1991年   11篇
  1990年   12篇
  1989年   15篇
  1988年   11篇
  1987年   5篇
  1986年   9篇
  1985年   8篇
  1984年   4篇
  1983年   5篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
排序方式: 共有4323条查询结果,搜索用时 281 毫秒
41.
A time series of zooplankton sampling carried out at Station 18 off Concepción (36°S, 73°W) from August 2002 to December 2003 allowed the study of annual life cycles of the copepods Calanus chilensis and Centropages brachiatus in association with environmental variability in the coastal upwelling zone. Changes in the abundance of eggs, nauplii, and copepodids were assessed from samples taken at a mean time interval of ca. 20 days. Upwelling variability in near-surface waters was reflected in seasonal changes in salinity, water column stratification, and oxycline depth, as well as a weak seasonal signal in sea surface temperature (1-2 °C). Both copepods exhibited similar life cycles, characterized by continuous reproduction throughout the year. Estimates of generation times, as a function of temperature, were 25-30 days for C. chilensis and 27-35 days for C. brachiatus, predicting about 12 and 10 generations a year, respectively. These estimates were consistent with reproduction pulses observed in the field. It was thus suggested that copepods may grow under non-limiting food conditions in this upwelling area. However, despite continuous reproduction, there were abrupt changes in population sizes along with the disappearance of early naupliar and copepodid stages taking place even during the upwelling season (spring/summer). These changes were attributed to sudden increases in mortality taking place in spring or early summer, after which the populations remained at low levels through the fall and winter. It is thus suggested that, in addition to variability in the physical environment, biological interactions modulating changes in copepod mortality should be considered for understanding copepod life cycles in highly productive upwelling systems.  相似文献   
42.
43.
Abstract. Seasonal changes in zooplankton biomass, abundance and species composition were studied at a neritic station in the Balearic Sea between April 1993 and May 1994. Sampling was carried out every 10 days in a zone influenced by the main current circulating through the Mallorca channel. Three main peaks of zooplankton biomass and abundance were observed: (1) at the beginning of summer when the thermocline developed, (2) in autumn when the thermocline broke down, and (3) in early spring. The smaller zooplankton fraction (100–250 μm) comprised on average 32 % of the total biomass and 73 % of total abundance. Copepods were the predominant group (64 % of the total abundance) with Clausocalanus, Oithona and Paracalanus being the most abundant genera. Paracalanus parvus, Clausocalanus furcatus, Acartia clausi, Oithona plumifera, Temora stylifera, Centropages typicus and Oncaea mediterranea were found to be the most important species in the area. Other abundant groups were cladocerans (15 %) and meroplankton larvae (12 %), both of which were particularly numerous during the stratified period. The copepod community was characterized by the above‐cited perennial species, which were abundant during the cycle studied. However, the influence of the hydrological conditions of the Balearic Sea, such as the Atlantic water influx and the physical structure of the water column (stratification and mixing), promoted the observed variability in zooplankton as well as the appearance of characteristic species during the annual cycle.  相似文献   
44.
Abstract. .The reproductive cycle of the brittlestar Ophioderma brevispinum is described using histological and organ index data for a population in Massachusetts, U.S.A. The cycle consists of a one month mid-summer spawning phase followed by gametogenesis and gradual gonadal growth during the winter, and greatly accelerated gonadal growth from May to June. At the end of the spawning season, oogonia proliferate near the base of the ovary, and a continuous layer of spermatogonia lines the testis. As oocytes grow to a maximum diameter of 350 um, yolk granules accumulate and the cytoplasm becomes less basophilic. Prior to spawning, the testis becomes branched and sulcate, and a whorl of spermatozoa produced by columns of spermatids accumulates in the lumen. Comparisons between the reproductive cycles of different populations of O. brevispinum and its congeners support the hypothesis that temperature may be a critical exogenous factor, but definitely not the only factor, in the initiation and duration of the growth and spawning phases of the ophiuroid reproductive cycle.  相似文献   
45.
The role of the hydrological regime in the nutrients and zooplankton composition and dynamics has been analysed in five lagoons of La Pletera salt marshes (NE Iberian Peninsula) during a complete hydrological cycle (2002–2003). Two of the lagoons have their origin in the old river mouths while the other three were recently created in the framework of a Life Restoration project. This fact has also allowed us to study the effect of the lagoon age on nutrient and zooplankton composition and dynamics. The salt marsh hydrology is determined by a prolonged period of confinement without water inputs, irregularly interrupted by sudden water inputs due to flooding events (sea storms or intense rainfalls). While the dynamics of oxidized nitrogen compounds in the lagoons depends on the water inputs variability within each hydrological cycle, the internal load of phosphorus, total nitrogen and organic matter is related more to the cumulative mechanisms during the confinement periods. Accumulation processes may be easily related to lagoon age, since old lagoons have higher content of nutrients and organic matter, suggesting that these lagoons progressively accumulate nutrients during the successive confinement events. This is the usual case for most Mediterranean salt marshes without an artificially manipulated water regime. The zooplankton community in La Pletera integrates the effects of both the hydrological regime and the lagoon age since the former determines the temporal pattern of the main zooplankton species and the latter explains differences in composition and structure between old and new lagoons.  相似文献   
46.
Under artificial LD cycles(6,12,18 L),the elvers of Japanese eel,Anguilla japonica,showed a 24 h cycle of locomotor activity rhythm being most active at light transitions:the eels' activity rose to a primary peak after lights-off,followed by a quiescent period during which they buried into the shelters or lying motionlessly on sand for most of the time,and then reached a secondary peak before lights-on.Elvers could resynchronize their activity rhythm with a new photo cycle within 4 d.Moreover,their activity level at dark phase significantly increased as the light period was prolonged:higher activity levels during shorter dark period.However,the elvers did not display clearly the existence of a circadian rhythm under constant light or dark conditions.The timing of daily activity rhythm evidenced in the Japanese eels may occur through the action of the LD cycles with a weak participation of an endogenous circadian system.In all the LD cycles,over 99% of the activity occurred in the dark phase,indicating that the eels were always nocturnally active no matter what time of day it might be.Under 12 L conditions,the eels' activity level and the time outside sand were significantly elevated both at light and dark phases as temperature increased from 10~15 to 20~25 ℃.The activity rhythm pattern(i.e.,two peaks occurring around light transitions) did not apparently change among temperatures.However,in contrast with the primary activity peaks immediately after lights-off at 20 and 25 ℃,the timing of the primary peaks at 10 and 15 ℃ showed a latency of a few hours following lights-off,indicating the inhibiting effect of low temperature on the eels' activity.  相似文献   
47.
Abstract. The reproductive cycle of the comatulid crinoid Nemaster rubiginosa from Discovery Bay, Jamaica is described histologically. The cycle is annual and may be divided into (1) a "resting" phase (summer) in which most adults possess immature, unsexable gonads, (2) a recovery phase (early fall) marked by the re-initiation of gametogenesis and rapid gonadal growth, (3) a breeding phase (late fall and winter) during which the gonads are mature and repeated spawning likely takes place, and (4) a post-spawning phase (spring) during which relict gametes are removed from the shrinking gonads. Although unsexable individuals predominate during the "resting" phase, a small proportion of the adult population is unsexable at all times of the year. The reproductive condition of animals in the same month in two successive years was very similar, suggesting that the timing of reproduction is quite predictable from year to year. The re-initiation of gametogenesis in the early fall is correlated with both rising sea temperature and shortening daylength, and the October to March breeding season corresponds to the period of short daylengths at the study site. The well-defined and synchronized annual reproductive cycle of Nemaster rubiginosa contrasts with the more prolonged and variable reproductive cycles reported for other tropical crinoids and points to a diversity of breeding patterns among tropical crinoids.  相似文献   
48.
根据对青岛附近水域欧氏六线鱼(已达性成熟年龄)性腺周年宏观和组织学观察,性腺发育可分为:①重复发育Ⅱ期;②开始成熟期;③接近成熟期;④临产期或产卵期;⑤产后期。按性腺指数变化并结合性腺组织切片确定,欧氏六线鱼性腺发育在青岛海区一年一个周期,繁殖期在10月下旬至12月,繁殖盛期是11月下旬至12月中旬。  相似文献   
49.
Intense studies of upper and deep ocean processes were carried out in the Northwestern Indian Ocean (Arabian Sea) within the framework of JGOFS and related projects in order to improve our understanding of the marine carbon cycle and the ocean’s role as a reservoir for atmospheric CO2. The results show a pronounced monsoon-driven seasonality with enhanced organic carbon fluxes into the deep-sea during the SW Monsoon and during the early and late NE Monsoon north of 10°N. The productivity is mainly regulated by inputs of nutrients from subsurface waters into the euphotic zone via upwelling and mixed layer-deepening. Deep mixing introduces light limitation by carrying photoautotrophic organisms below the euphotic zone during the peak of the NE Monsoon. Nevertheless, deep mixing and strong upwelling during the SW Monsoon provide an ecological advantage for diatoms over other photoautotrophic organisms by increasing the silica concentrations in the euphotic zone. When silica concentrations fall below 2 μmol l−1, diatoms lose their dominance in the plankton community. During diatom-dominated blooms, the biological pathway of uptake of CO2 (the biological pump) appears to be more efficient than during blooms of other organisms, as indicated by organic carbon to carbonate carbon (rain) ratios. Due to the seasonal alternation of diatom and non-diatom dominated exports, spatial variations of the annual mean rain ratios are hardly discernible along the main JGOFS transect.Data-based estimates of the annual mean impact of the biological pump on the fCO2 in the surface water suggest that the biological pump reduces the increase of fCO2 in the surface water caused by intrusion of CO2-enriched subsurface water by 50–70%. The remaining 30 to 50% are attributed to CO2 emissions into the atmosphere. Rain ratios up to 60% higher in river-influenced areas off Pakistan and in the Bay of Bengal than in the open Arabian Sea imply that riverine silica inputs can further enhance the impact of the biological pump on the fCO2 in the surface water by supporting diatom blooms. Consequently, it is assumed that reduced river discharges caused by the damming of major rivers increase CO2 emission by lowering silica inputs to the Arabian Sea; this mechanism probably operates in other regions of the world ocean also.  相似文献   
50.
海洋贝类利用模式生命周期评价方法研究   总被引:2,自引:0,他引:2  
首次将产品生命周期评价方法(LCA)应用于海洋贝类利用模式上。根据海洋贝类利用技术产业发展的特性和趋势,设计构建了由确定目标和范围、清单分析、影响评价3个步骤组成的评价体系,挑选了具有典型代表的2种扇贝利用模式进行评价,对其生产过程中的资源消耗、固体废弃物、富营养化、温室效应、酸化影响和潜在影响进行对比评价。评价结果显示其中资源消耗、温室效应、酸化影响、潜在健康影响的影响潜值模式2(产品模式为扇贝柱、复合氨基酸、鱼虾饵料和贝壳工艺品)比模式1(产品模式为扇贝柱、食用贝边、鱼虾鲜饵料和饲料添加剂)低;而固体废弃物、富营养化的影响潜值,模式2比模式1高。本评价方法可用于选择和优化海洋贝类的绿色化高值利用模式。研究表明,利用文章提出的海洋贝类利用评价方法可以有效掌握贝类利用的整个过程的环境行为,确定其中优化资源、节省能源和减少污染的关键步骤,为优化利用模式提供基础数据支持。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号