首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3190篇
  免费   825篇
  国内免费   2535篇
测绘学   3篇
大气科学   2篇
地球物理   302篇
地质学   5865篇
海洋学   226篇
综合类   112篇
自然地理   40篇
  2024年   40篇
  2023年   97篇
  2022年   194篇
  2021年   262篇
  2020年   266篇
  2019年   352篇
  2018年   374篇
  2017年   332篇
  2016年   354篇
  2015年   346篇
  2014年   410篇
  2013年   404篇
  2012年   490篇
  2011年   277篇
  2010年   254篇
  2009年   217篇
  2008年   210篇
  2007年   231篇
  2006年   198篇
  2005年   187篇
  2004年   146篇
  2003年   129篇
  2002年   105篇
  2001年   96篇
  2000年   97篇
  1999年   69篇
  1998年   60篇
  1997年   69篇
  1996年   51篇
  1995年   44篇
  1994年   48篇
  1993年   38篇
  1992年   31篇
  1991年   19篇
  1990年   4篇
  1989年   18篇
  1988年   8篇
  1987年   12篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
排序方式: 共有6550条查询结果,搜索用时 718 毫秒
981.
The recently discovered polymetallic Shazigou Mo–W–Pb–Zn ore field is located at the northern margin of the North China Craton. This integrated metallogenic system is comprised of quartz vein mineralization in three deposits: Shazigou Mo–W, Jindouzishan Pb–Zn and Mantougou Pb–Zn. The total reserves are estimated to be 50 kt Mo, 626 t WO3, 244 kt Pb and 150 kt Zn. Molybdenite Re–Os dating of five quartz vein-type ores yielded a mean model age of 243.8 ± 1.6 Ma (MSWD = 0.81) and hydrothermal zircons yielded a concordant U–Pb age of 245 ± 2.6 Ma (MSWD = 0.65). These results suggest that the mineralization was formed in the early Triassic and could be related to Paleo-Asian Ocean subduction. Microthermometry and quartz fluid inclusion compositions indicate that fluids related to the Mo–W mineralization were mainly derived from magmatic sources and precipitated under relatively high temperature (280–340 °C) and salinity conditions (6–9 wt% NaCl equiv.), whereas subsequent Pb–Zn mineralization-related fluids may have been modified by metamorphic and meteoric waters. The discovery of the Shazigou ore field suggests conditions may be favourable for more extensive mineralization in the western Xilamulun Mo metallogenic belt at the northern margin of the North China Craton.  相似文献   
982.
The Hetai goldfield, located in the southern segment of the Qinzhou Bay-Hangzhou Bay Juncture Orogenic Belt (QHJB), is the largest concentration of gold deposits in Guangdong Province, South China. The gold mineralization is hosted within the late Neoproterozoic to early Paleozoic Yunkai Group and strictly confined to mylonite (ductile shear) zones. The nature of the structural control of mineralization, in particular the role of ductile versus brittle deformation and their ages, which remain unclear despite numerous previous studies, are examined in this paper through an integrated study of geochronology and mineralogy.Lamellar and filament structures shown by pyrite and pyrrhotite in the ores suggest that sulfidation took place during ductile deformation and syntectonic metamorphism, but the majority of the ores are associated with brittle deformation features. In combination with macroscopic and microscopy observations on shear fabrics, LA-ICP-MS U-Pb dating on zircons of hydrothermal origin from mylonites suggests that the Hetai goldfield was subjected to two shearing events: an early sinistral ductile shearing at ca. 240 Ma, and a late dextral ductile-brittle shearing at ca. 204 Ma (Indosinian). These ages are ca. 90–30 Ma older than the previously published gold mineralizing ages of ca. 175–152 Ma (Yanshanian), suggesting that the main gold mineralization and related brittle deformation significantly postdate the ductile deformation. This inference is supported by the mineralization temperatures estimated from geothermometers of arsenopyrite (ca. 350–290 °C), chlorite (ca. 260–230 °C), and sphalerite (ca. 230–170 °C) intergrown with native gold, which are considerably lower than that for the ductile deformation (500–300 °C or higher). Based on these data, we propose that the gold mineralization in the Hetai goldfield predominantly occurred during the Yanshanian event, and only minor gold mineralization and associated sulfidation took place during the earlier Indosinian ductile deformation.  相似文献   
983.
The Yinchanggou Pb-Zn deposit, located in southwestern Sichuan Province, western Yangtze Block, is stratigraphically controlled by late Ediacaran Dengying Formation and contains >0.3 Mt of metal reserves with 11 wt% Pb + Zn. A principal feature is that this deposit is structurally controlled by normal faults, whereas other typical deposits nearby (e.g. Maozu) are controlled by reverse faults. The origin of the Yinchanggou deposit is still controversial. Ore genetic models, based on conventional whole-rock isotope tracers, favor either sedimentary basin brine, magmatic water or metamorphic fluid sources. Here we use in situ Pb and bulk Sr isotope features of sulfide minerals to constrain the origin and evolution of hydrothermal fluids. The Pb isotope compositions of galena determined by femtosecond LA-MC-ICPMS are as follows: 206Pb/204Pb = 18.17–18.24, 207Pb/204Pb = 15.69–15.71, 208Pb/204Pb = 38.51–38.63. These in situ Pb isotope data overlap with bulk-chemistry Pb isotope compositions of sulfide minerals (206Pb/204Pb = 18.11–18.40, 207Pb/204Pb = 15.66–15.76, 208Pb/204Pb = 38.25–38.88), and both sets of data plotting above the Pb evolution curve of average upper continental crust. Such Pb isotope signatures suggest an upper crustal source of Pb. In addition, the coarse-grained galena in massive ore collected from the deep part has higher 206Pb/204Pb ratios (18.18–18.24) than the fine-grained galena in stockwork ore sampled from the shallow part (206Pb/204Pb = 18.17–18.19), whereas the latter has higher 208Pb/204Pb ratios (38.59–38.63) than the former (208Pb/204Pb = 38.51–38.59). However, both types of galena have the same 207Pb/204Pb ratios (15.69–15.71). This implies two independent Pb sources, and the metal Pb derived from the basement metamorphic rocks was dominant during the early phase of ore formation in the deep part, whereas the ore-hosting sedimentary rocks supplied the majority of metal Pb at the late phase in the shallow part. In addition, sphalerite separated from different levels has initial 87Sr/86Sr ratios ranging from 0.7101 to 0.7130, which are higher than the ore formation age-corrected 87Sr/86Sr ratios of country sedimentary rocks (87Sr/86Sr200 Ma = 0.7083–0.7096), but are significantly lower than those of the ore formation age-corrected basement rocks (87Sr/86Sr200 Ma = 0.7243–0.7288). Again, such Sr isotope signatures suggest that the above two Pb sources were involved in ore formation. Hence, the gradually mixing process of mineralizing elements and associated fluids plays a key role in the precipitation of sulfide minerals at the Yinchanggou ore district. Integrating all the evidence, we interpret the Yinchanggou deposit as a strata-bound, normal fault-controlled epigenetic deposit that formed during the late Indosinian. We also propose that the massive ore is formed earlier than the stockwork ore, and the temporal-spatial variations of Pb and Sr isotopes suggest a certain potential of ore prospecting in the deep mining area.  相似文献   
984.
The Duguer area represents one of the few occurrences of high-grade metamorphic rocks in the ‘Central Uplift’ zone of the Qiangtang terrane, central Tibet. The metamorphic rocks consist mainly of orthogneiss, paragneiss, and schist. To better understand the formation of these rocks, seven samples of gneiss and schist from the Duguer area were selected for in situ zircon U–Pb analysis and Ar–Ar dating of metamorphic minerals. The results suggest two distinct metamorphic stages, during the Late Triassic (229–227 Ma) and Late Jurassic (150–149 Ma). These stages correspond to the closure of the Palaeo-Tethys Ocean and northward subduction of the Bangong–Nujiang Neo-Tethys oceanic crust, respectively. We suggest that the Late Triassic metamorphic rocks of the Duguer area in the central South Qiangtang subterrane provide evidence of continental collision between the North and South Qiangtang subterranes, following the subduction of oceanic crust. It is likely that deep subduction of oceanic crust occurred along the Longmu Co–Shuanghu–Lancangjiang suture zone (LSLSZ), which would have hindered exhumation owing to the high density of oceanic crust. Subsequent break-off and delamination of the subducted oceanic slab at ~220 Ma may have resulted in exhumation of high-pressure and high-grade metamorphic rocks in the South Qiangtang subterrane. The Late Jurassic ages of metamorphism and deformation obtained in this study indicate the occurrence of an Andean-type orogenic event within the South Qiangtang subterrane. This hypothesis is further supported by an apparent age gap in magmatic activity (150–130 Ma) along the magmatic arc, and the absence of Late Jurassic sediments.  相似文献   
985.
Identifying the cratonic affinity of Neoproterozoic crust that surrounds the northern margin of the Siberian Craton (SC) is critical for determining its tectonic evolution and placing the Craton in Neoproterozoic supercontinental reconstructions. Integration of new U–Pb–Hf detrital zircon data with regional geological constraints indicates that distinct Neoproterozoic arc-related magmatic belts can be identified within the Taimyr orogen. Sedimentary rocks derived from 970 to 800 Ma arc-related suites reveal abundant Archean and Paleoproterozoic detritus, characteristic of the SC. The 720–600 Ma arc-related zircon population from the younger Cambrian sedimentary rocks is also complemented by an exotic juvenile Mesoproterozoic zircon population and erosional products of older arc-related suites. Nonetheless, numerous evidences imply that both arcs broadly reworked Siberian basement components. We suggest that the early Neoproterozoic (ca. 970–800 Ma) arc system of the Taimyr orogen evolved on the active margin of the SC and probably extended along the periphery of Rodinia into Valhalla orogen of NE Laurentia. We also suggest the late Neoproterozoic (750–550 Ma) arc system could have been part of the Timanian orogen, which linked Siberia and Baltica at the Precambrian/Phanerozoic transition.  相似文献   
986.
The Chinese Tianshan Orogen marks prolonged and complicated interactions between the southwestern Palaeo-Asian Ocean and surrounding blocks. New and previously published detrital zircon chronological data from modern and palaeo-river sands were compiled to reveal its tectonic evolution. It is characterized by predominant Palaeozoic as well as minor Mesozoic and Precambrian detrital zircon ages with a multimodal characteristic. The oldest Phanerozoic zircon population (peaking at 475 Ma) is a result of subduction and closure of the early Palaeozoic Terskey Ocean. However, the absence of this peak in the Chinese North and southern South Tianshan suggests that subductions of the North and South Tianshan oceans may not have initiated until the Late Ordovician with subsequent 460–390 and 360–320 Ma arc magmatism. Similar to the magmatic suite in classic collisional orogens, the youngest massive 320–270 Ma magmatism is suggested to be post-collisional. The North and South Tianshan oceans therefore probably had their closure to form the Chinese Tianshan Orogen during the late Carboniferous. The weak Mesozoic intra-plate magmatism further rejects a late Permian–Triassic Tianshan Orogen due to a lack of extensive syn- and post-collisional magmatism. Moreover, diverse Precambrian detrital zircon age patterns indicate that the surrounding blocks have distinct evolutionary processes with short-term amalgamation during the Meso- to Neoproterozoic.  相似文献   
987.
The Paulistana and Santa Filomena Complexes are situated in the southern part of the Borborema Province (northeastern Brazil), in the Riacho do Pontal Orogen, and represent meta-volcano-sedimentary sequences. We present compositional variations in the metasedimentary rocks and new U–Pb detrital zircon data. Major and trace elements indicate that the metasedimentary rocks from the Paulistana and Santa Filomena Complexes are composed mostly of immature to mature sediments derived from felsic-intermediate sources with moderate to slightly high chemical weathering. The geochemical signatures of the sediment protoliths for both complexes are characteristic of continental magmatic arc settings with minor contribution from recycled sediment sources. The source area for the Paulistana Complex rocks follow the compositional trend between calc-alkaline granites and granodiorites, whereas the Santa Filomena Complex rocks have a more restricted composition trending to more granodioritic sources. For the Paulistana Complex, two main source ages were identified: (1) Tonian (ca. 950 Ma – sample RPE-58) and Tonian–Stenian (ca. 1.0 Ga – sample RPE-103). These data coupled with geochemical information suggest that the Cariris Velhos arc system was the main source area for the Paulistana Complex. Regarding the Santa Filomena metasedimentary rocks, potential source-areas include: (1) Neoarchaean rocks (~2.6 Ga) represented by the adjacent basement rocks of the Riacho do Pontal Orogen; (2) Rhyacian–Orosirian rocks (2.2–2.0 Ga) of the Riacho do Pontal Orogen and the Pernambuco–Alagoas terrain, which include an augen-gneiss with arc-related geochemical signature; (3) Statherian granites (1.7–1.6 Ga); and (4) Cariris Velhos crust (1000–920 Ma). The metasedimentary rocks of the Paulistana Complex were deposited in a rift stage (ca. 900 Ma), which is related to the break-up of the Rodinia supercontinent. The metasedimentary rocks of the Santa Filomena Complex most probably were deposited in another rift stage (ca. 750–700 Ma) and could be correlatives of the rift formation of the Canindé Domain (Sergipano Orogen).  相似文献   
988.
West Qinling is one of the most important parts of the Qinling orogenic belt and includes acidic–intermediate plutons and many types of ore deposits. In this article, we collected geochemical and geochronological data for the Triassic granitoid plutons of West Qinling and found that nearly all plutons share the similar features with the Zhongchuan pluton. We present new laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb ages, major and trace element geochemistry, and zircon Hf isotope systematics for the granites of the Zhongchuan pluton to elucidate the evolution of granitoid plutons in West Qinling during the Triassic. LA-ICP-MS zircon U–Pb dating indicates that the Xujiaba and Guandigou units formed at 220.1 ± 1.2 and 215.9 ± 0.85 Ma, respectively, reflecting the time of the Late Triassic. The rocks of the Zhongchuan pluton are metaluminous to weakly peraluminous and have a high-K calc-alkaline to shoshonite series with high SiO2 (63.59–76.22%) and low P2O5 (0–0.2%) concentrations, a high K2O/Na2O ratio (1.18–17.92), a high differentiation index (78.45–93.04) and a medium A/CNK ratio (0.98–1.69). The zircon Hf isotope dating indicates that the Xujiaba and Guandigou units have an inhomogeneous εHf(t) (?4.425 to 1.067 for Xujiaba and ?4.920 to 2.042 for Guandigou) and two-stage Hf model ages (1123–1531 Ma for Xujiaba and 1115–2342 Ma for Guandigou). The geochemical and isotopic data imply that the granites of each unit share the same origin. They probably derived from the partial melt of metagreywackes and then mixed with the mantle-derived magma. Based on the regional geological history, petrographic characteristics and new geochemical and isotopic data of the Zhongchuan pluton, we suggest that the Triassic magma was derived from the partial melts of metagreywackes and was influenced by the mantle-derived melt during the collision of the Yangtze and Qinling plates.  相似文献   
989.
Various tectonic models have been proposed to account for the widely distributed igneous activities in the southeastern part of the South China Block (SCB) during the Triassic–Jurassic period. One of the major contending debates is on the timing of initiation of the palaeo-Pacific plate subduction under the SCB, due to lack of unequivocal evidence for arc magmatism during the period in this region.

The 191 ± 10 Ma (N = 5, MSWD = 12) calc-alkalic high-K I-type Talun metagranite occurs in the southern Tailuko belt of the Tananao metamorphic complex, Taiwan. In terms of age, this metagranite belongs to the Early Yanshanian igneous activity in the southeastern part of the SCB. However, its geographic position does not accord with the well-known general oceanward younging trend of the Yansnanian igneous rocks. In view of the large age uncertainty reported, this metagranite is redated in this study. Some zircons of this metagranite are high in U content and are metamict. Zircons with low U contents are analysed by SHRIMP yielding a more precise age of 200 ± 2 Ma (N = 10, MSWD = 4). In particular, the εHf(t) of these dated zircons ranges from +4.5 to +12.9. The metagranite mainly consists of quartz, K-feldspar, plagioclase, with minor amounts of garnet, biotite, zircon, apatite, and pyrrhotite. Chlorite and calcite are secondary phases overprinted by the later tectonic event(s). Its initial Sr isotope compositional range is 0.70473–0.70588, and εNd(t), +2.4 to +3.6. The results demonstrate that the genesis of this metagranite could be attributed to the assimilation-fractionation of a depleted mantle-derived basaltic magma, which was most likely related to arc magmatism. The present study therefore offers key evidence that during the Mesozoic, the palaeo-Pacific plate subduction underneath the SCB would have taken place no later than the very early Jurassic.  相似文献   

990.
新疆北部青河县阿斯喀尔特铍矿床的形成与岩浆活动密切相关,是中国花岗岩型铍矿床的典型代表。对矿区斑状二云母二长花岗岩进行LA-ICP-MS锆石U-Pb年龄测试,获得其加权平均年龄为(216.7±2.8)Ma(MSWD=0.48),表明该岩体形成时代为晚三叠世,据此限定阿斯喀尔特铍矿床成矿时代略晚于216 Ma,为晚三叠世—早侏罗世。岩石具有高硅(w(Si O2)=70.86%~76.34%)、富碱(ALK=5.54~9.30)、富铝(w(Al_2O_3)=13.00%~14.74%,A/CNK=0.99~1.23)、低钛(w(Ti O2)=0.02%~0.18%)和镁(w(Mg O)=0.02%~1.21%)特征,为过铝质中钾-高钾岩石系列。稀土元素配分型式显示LREE的相对弱富集,HREE较平坦以及Eu弱-中等的负异常(δEu=0.37~0.90),呈略右倾型。微量元素Ba、Sr、Hf、Ti等具负异常,Rb、Th、K、Nb、Ta、La、Ce、Nd、Sm等具正异常,Rb/Sr比值较高(9.34~26.81),显示出S型花岗岩特征。结合区域资料,认为阿斯喀尔特铍矿矿区印支期花岗岩形成于后造山构造阶段,可能是上地壳含砂泥质岩石部分熔融的产物。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号