首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2006篇
  免费   304篇
  国内免费   591篇
测绘学   131篇
大气科学   81篇
地球物理   312篇
地质学   1812篇
海洋学   204篇
天文学   73篇
综合类   103篇
自然地理   185篇
  2024年   10篇
  2023年   46篇
  2022年   66篇
  2021年   96篇
  2020年   110篇
  2019年   97篇
  2018年   146篇
  2017年   147篇
  2016年   133篇
  2015年   149篇
  2014年   161篇
  2013年   164篇
  2012年   202篇
  2011年   112篇
  2010年   100篇
  2009年   82篇
  2008年   75篇
  2007年   101篇
  2006年   95篇
  2005年   79篇
  2004年   66篇
  2003年   77篇
  2002年   78篇
  2001年   54篇
  2000年   58篇
  1999年   51篇
  1998年   51篇
  1997年   41篇
  1996年   31篇
  1995年   30篇
  1994年   32篇
  1993年   27篇
  1992年   23篇
  1991年   14篇
  1990年   11篇
  1989年   15篇
  1988年   10篇
  1987年   9篇
  1986年   7篇
  1985年   11篇
  1984年   6篇
  1983年   5篇
  1982年   7篇
  1981年   5篇
  1980年   2篇
  1978年   2篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有2901条查询结果,搜索用时 31 毫秒
991.
《International Geology Review》2012,54(14):1791-1805
Newly discovered basalts in the Dabure area (central Qiangtang block, northern Tibet) were subjected to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb zircon dating, geochemical analyses, and zircon Hf isotope analyses. Dating of magmatic zircons from three basalt samples indicates that the Dabure basalts formed during the late Ediacaran (~550 Ma). Xenocrystic zircons yield ages of 700–1150 Ma, providing evidence of the Cryogenian crust in the Tibet block. The Dabure basalts are alkaline, rich in Ti and Fe, and are strongly enriched in light rare earth elements without Eu anomalies. The basalts are geochemically similar to within-plate basalts but are relatively depleted in Nb and Ta. Although the analysed zircons show differences in their Hf isotope compositions, the geochemical data suggest that the Dabure basalts were derived from enriched mantle and that the source magmas were contaminated by the continental crust. The basalts may have erupted during rifting at ~550 Ma (from the dating of magmatic zircons), and may have been a product of the initial breakup of Gondwanaland.  相似文献   
992.
《International Geology Review》2012,54(13):1735-1754
Widespread granitic intrusions in the northeast part of the Wulonggou area were previously thought to be emplaced into the Palaeoproterozoic Jinshuikou Group during the Neoproterozoic. This contribution presents detailed LA-ICP-MS zircon U–Pb geochronology, major and trace element geochemistry, and zircon Hf isotope systematic on the Wulonggou Granodiorite and Xiaoyakou Granite from the Wulonggou area. Three granodiorite samples yielded U–Pb zircon ages of 247 ± 2, 248 ± 1, and 249 ± 1 Ma, and one granite sample yielded U–Pb zircon age of 246 ± 3 Ma. The granodiorite samples are metaluminous with an alumina saturation index of 0.90–0.96, as well as intermediate- to high-alkali contents of 5.49–6.14 wt.%, and low Zr+Nb+Ce+Y contents, and low Fe2O3T/MgO ratios, which suggest an I-type classical island arc magmatic source. The granite samples are peraluminous with an alumina saturation index of 1.02–1.03, Sr content of 305.00–374.00 ppm, Sr/Y ratios of between 17.68 and 28.77, (La/Yb)N values of 16.98–25.07, low HREEs (Yb = 1.10–2.00 ppm), and low Y (13.00–21.10 ppm), which suggest adakite-like rocks. All granodiorite samples have zircons εHf(t) values ranging from ?2.9 to +3.9, and granite samples have zircon εHf(t) values ranging from ?7.8 to +3.2. These Hf isotopic data suggest that the Early Triassic granites were derived from the partial melting of a mafic Mesoproterozoic lower crust, although the degree of ancient crustal assimilation may be higher for the Xiaoyakou Granite. It is suggested here that the ca. 246–248 Ma magma was generated during the northward subduction of the Palaeo-Tethys oceanic plate.  相似文献   
993.
In order to constrain the detrital provenance of the siliciclastic rocks, palaeogeographic variations, and crustal growth history of central China, we carried out simultaneously in situ U–Pb dating and trace element and Hf isotope analyses on 368 detrital zircons obtained from upper Permian–Triassic sandstones of the Songpan terrane, eastern Tibetan Plateau. Two groups of detrital zircons, i.e. magmatic and metamorphic in origin, have been identified based on cathodoluminescence images, zircon Ti-temperatures, and Th/U ratios. Our data suggest that the derivation of siliciclastic rocks in the Songpan terrane was mainly from the Qinling, Qilian, and Kunlun orogens, whereas the Yangtze and North China Cratons served as minor source areas during late Permian–Triassic times. The detrital zircons from Middle–Late Triassic siliciclastic rocks exhibit wide age spectra with two dominant populations of 230–600 Ma and >1600 Ma, peaking at ~1.8–1.9 Ga and ~2.4–2.5 Ga, suggestive of a derivation from the Qinling, Qilian, and Kunlun orogens and the Yangtze Craton being the minor source area. The proportions of detrital zircon populations from the northern Qinling, Qilian, and Kunlun orogens distinctly decreased during Middle–Late Triassic time, demonstrating that the initial uplift of the western Qinling occurred then and it could have blocked most of the detritus from the Qilian–northern Qinling orogens and North China Cratons into the main Songpan–Ganzi depositional basin. The relatively detrital zircon proportions of the Yangtze Craton source decreased during Early-Middle Late Triassic time, indicating that the Longmenshan orogen was probably being elevated, since the early Late Triassic and gradually formed a barrier between the Yangtze Craton and the Songpan terrane. In addition, our Lu–Hf isotopic results also reveal that the Phanerozoic magmatic rocks in central China had been the primary products of crustal reworking with insignificant formation of a juvenile crust.  相似文献   
994.
The geodynamic setting of Mesozoic magmatic rocks and associated mineralization in eastern Tianshan, Northwest China, are attracting increasing attention. The newly discovered giant Donggebi molybdenum deposit (0.508 Mt at 0.115% Mo) is located in the central part of eastern Tianshan, Xinjiang. The molybdenum mineralization was genetically associated with the Donggebi stock, comprised of porphyritic granite and granite porphyry. Secondary ion mass spectrometry (SIMS) zircon U–Pb dating constrains that the porphyritic granite and granite porphyry emplacement occurred at 233.8 ± 2.5 Ma and 231.7 ± 2.6 Ma, respectively. The Re–Os model ages of six molybdenite samples range from 235.2 to 237.0 Ma, with a weighted mean age of 236.1 ± 1.4 Ma, which is roughly consistent within errors with the zircon U–Pb ages, suggesting a Middle Triassic magmatic–mineralization event at Donggebi. Geochemically, the Donggebi granitoids are characterized by high SiO2 and K2O contents, with low MgO contents, belonging to high-K calc-alkaline granites. These rocks show pronounced enrichment in K, Rb, U, and Pb, and depletion in Sr, Ba, P, and Ti, with negative Eu anomalies (Eu/Eu* = 0.20–0.38). In situ Hf isotopic analyses of zircon from the porphyritic granite and granite porphyry yielded εHf(t) values ranging from +6.6 to +10.5, and from +5.5 to +10.1, respectively. The geochemical and isotopic data imply that the primary magmas of the Donggebi granitoids could have originated by partial melting of a juvenile lower crust that involved some mantle components. Combined with the regional geological history, geochemistry of the Donggebi granitoids, and new isotopic age data, we thus propose that the Donggebi molybdenum deposit was formed in the Middle Triassic, and occurred in an intracontinental extension setting in eastern Tianshan.  相似文献   
995.
abstract

An integrated study including petrography, mineral chemistry, metamorphic P–T path modelling, and zircon U–Pb dating was conducted on a granitic gneiss and enclosed eclogite from South Dulan, North Qaidam UHP (ultrahigh-pressure) belt. The result shows that the granitic gneiss underwent a clockwise P–T path with a peak-P stage at 655–745°C, 30–34 kbar, and a subsequent peak-T stage at 815–870°C, 14–18 kbar, which is similar to the P–T estimates reported for coesite-bearing continental-type eclogites in this region. The enclosed eclogite resembles an olivine–pyroxene-rich cumulate in Qaidam block. It has a similar prograde P–T path with the country gneiss and experienced a peak-P stage of 682–748°C at 27–34 kbar. Zircon U–Pb dating yields an eclogite-facies metamorphic age of 447 ± 2 Ma for the granitic gneiss and 445 ± 6 Ma for the enclosed eclogite. These ages agree with metamorphic ages obtained from paragneisses (427–439 Ma), coesite-bearing continental-type eclogites (430–451 Ma), and UHPM (ultrahigh-pressure metamorphic) oceanic crust–mantle sequence (440–445 Ma) from South Dulan, as well as UHP eclogites, garnet peridotite, and gneisses from other units (460–420 Ma) within this belt reported by others. Similar metamorphic ages as well as P–T evolution documented in gneisses and intercalated eclogites imply that both rocks experienced a coeval UHP event. Summarizing all the published geochronology data, we argue that the North Qaidam UHP belt was mainly formed by continental deep subduction at ~460 to ~420 Ma. The UHPM oceanic crust-mantle sequence in South Dulan may represent oceanic lithosphere in the transition zone between oceanic and continental crust, which was dragged upward by the exhumed continental rocks after break-off of the dense oceanic crust.  相似文献   
996.
《International Geology Review》2012,54(16):1964-1983
Extensive magmatism occurred in southeast China during Late Jurassic time, forming large-scale granitic and volcanic rocks associated with non-ferrous, rare earth and rare, radioactive metal deposits. The Shuikoushan Pb–Zn–Au orefield is a typical example located in Hunan Province. This study reports LA-ICP-MS zircon U–Pb ages, whole-rock chemistry, and Sr–Nd–Pb isotopic compositions, and in situ Hf isotopic geochemistry of zircons from the Laomengshan rhyodacite in the Shuikoushan Pb–Zn–Au orefield. Zircon U–Pb dating yields a weighted average age of 156.7 ± 1.6 Ma for the intrusion of the rhyodacite. The rhyodacite samples are mainly shoshonitic series, having metaluminous to weakly peraluminous A/CNK values ranging from 0.96 to 1.09, with moderately high magnesium content (Mg# = 42.4–47.5). Samples display high (87Sr/86Sr)i values (0.71165–0.71176), low εNd(T) values (?10.7 to ?10.3), old Nd model ages (TDM = 1.73–1.86 Ga), and relatively homogeneous Pb isotopic compositions [(206Pb/204Pb)i = 18.365–18.412, (207Pb/204Pb)i = 15.663–15.680, and (208Pb/204Pb)i = 38.625–38.666]. The zircons exhibit enriched εHf(T) values (?16.22 to ?9.86) and old two-stage Hf model ages (TDM2 = 1.82–2.22 Ga). All the above data indicate that the Laomengshan rhyodacite originated from melting Palaeoproterozoic basement, perhaps contaminated by subordinate mantle melts. Intense extension and thinning of the continental lithosphere during Late Jurassic time resulted in melting of upwelling asthenosphere, and mafic mantle melts interacted with and melted Palaeoproterozoic lower crust, thus forming the Laomengshan rhyodacite.  相似文献   
997.
《International Geology Review》2012,54(11):1409-1428
ABSTRACT

The Mauranipur and Babina greenstone belts of the Bundelkhand Craton are formed of the Central Bundelkhand greenstone complex (CBGC). This complex represents tectonic collage which has not been previously studied in depth. The purpose of this study is to contribute to the understanding of the main features of the Archaean crustal evolution of the Bundelkhand Craton. The CBGC consists of two assemblages: (1) the early assemblage, which is composed of basic-ultramafic, rhyolitic–dacitic, and banded iron formation units, and (2) the late assemblage, which is a felsic volcanic unit. The units and assemblages are tectonically unified with epidote–quartz–plagioclase metasomatic rocks formed locally in these tectonic zones.

The early assemblage of the Mauranipur greenstone belt is estimated at 2810 ± 13 Ma, from the U–Pb dating (SHRIMP, zircon) of the felsic volcanics. Also, there are inherited 3242 ± 65 Ma zircons in this rock. It is deduced that this assemblage is related to early felsic subduction volcanism during the Mesoarchaean that occurred in the Bundelkhand Craton.

Zircons extracted from metasomatic rocks in the early assemblage’s high-Mg basalts show a concordant age of 2687 ± 11 Ma. This age is interpreted as a time of metamorphism that occurred simultaneously with an early accretion stage in the evolution of the Mauranipur greenstone belt.

The felsic volcanism, appearing as subvolcanic bodies in the late assemblage of the Mauranipur greenstone belt, is estimated to be 2557 ± 33 Ma from the U–Pb dating (SHRIMP, zircon) of the felsic volcanic rocks. This rock also contains inherited 2864 ± 46 Ma zircons. The late assemblage of the Mauranipur greenstone belt corresponds with a geodynamic setting of active subduction along the continental margin during Neoarchaean.

The late assemblage Neoarchaean felsic volcanic rocks from the Mauranipur and Babina greenstone belts are comparable in age and geochemical characteristics. The Neoarchaean rocks are more enriched in Sr and Ba and are more depleted in Cr and Ni than the Mesoarchaean felsic volcanic rocks of the early assemblage.

Through isotopic dating and the geochemical analysis of the volcanic and metasomatic rocks of the CBGC, this study has revealed two subduction–accretion events, the Meso–Neoarchaean (2.81–2.7 Ga) and Neoarchaean (2.56–2.53 Ga), during the crustal evolution of the Bundelkhand Craton (Indian Shield).  相似文献   
998.
《International Geology Review》2012,54(13):1666-1689
ABSTRACT

The Wulonggou area in the Eastern Kunlun Orogen (EKO) in Northwest China is characterized by extensive granitic magmatism, ductile faulting, and orogenic gold mineralizations. The Shidonggou granite is located in the central part of the Wulonggou area. This study investigated the major as well as trace-element compositions, zircon U–Pb dates, and zircon Hf isotopic compositions of the Shidonggou granite. Three Shidonggou granite samples yielded an average U–Pb zircon age of 416 Ma (Late Silurian). The Late Silurian Shidonggou granite is peraluminous, with high alkali contents, high Ga/Al ratios, high (K2O + Na2O)/CaO ratios, and high Fe2O3T/MgO ratios, suggesting an A-type granite. The Shidonggou granite samples have zircon εHf(t) values ranging from ?7.1 to +4.4. The Hf isotopic data suggest that the Late Silurian granite was derived from the partial melting of Palaeo- to Mesoproterozoic juvenile mantle-derived mafic lower crust. Detailed geochronological and geochemical data suggest that the Late Silurian granite was emplaced in a post-collisional environment following the closure of the Proto-Tethys Ocean. Combining data of other A-type granitic rocks with ages of Late Early Silurian to Middle Devonian, such post-collisional setting related to the Proto-Tethys Ocean commenced at least as early as ~430 Ma (Late Early Silurian), and sustained up to ~389 Ma (Middle Devonian) in the EKO.  相似文献   
999.
《International Geology Review》2012,54(15):1914-1939
ABSTRACT

Global-scale Palaeozoic plate tectonic reconstructions have suggested that Laurentia was obliquely approaching against the northwestern margin of Gondwana until the final agglutination of Pangea. In this contribution integrated petrographic analysis, heavy mineral analysis, and tourmaline geochemistry were done, and U–Pb detrital zircon geochronology was obtained, in late Palaeozoic sedimentary and meta-sedimentary units from the Floresta and Santander Massifs in the Eastern Colombian Andes in order to constrain their provenance and related it with the magmatic, sedimentary, and deformational record of the Gondwana–Laurentia convergence until the late Carboniferous to Permian formation of Pangea. Late Devonian to early Carboniferous sandstones from the Floresta Massif changed from sublithoarenites to lithoarenites, tracking the progressive uplift and unroofing of sedimentary and metamorphic rocks, with associated volcanic activity. The U–Pb detrital zircon geochronology from the sedimentary and metasedimentary of Floresta and Santander documents Mesoproterozoic and Palaeoproterozoic sources, and younger Ordovician to Silurian age populations, that can be related to the early to middle Palaeozoic plutonic rocks and the Amazon Craton. The limited Silurian to Early Devonian detrital ages that contrast with the more significant Middle to Late Devonian zircons that document the erosion of contemporaneous magmatic sources formed after a late Silurian to Early Devonian reduction on the magmatic activity along the proto-Andean margin. These rocks were apparently deformed and metamorphosed between the late Carboniferous and the early Permian. It is suggested that the filling and deformation record of these rocks documented the changes in plate convergence obliquity at the western margin of Gondwana associated with the migration of Laurentia until its final position in Pangea. Between the late Carboniferous and the early Permian, peri-Gondwanan continental terranes also collided with the continental margin. Over-imposed Mesozoic tectonics have contributed to the final redistribution of these terranes to their current position.

Abbreviations:LA: laser ablation inductively couple mass spectrometer; CL: cathodoluminiscence  相似文献   
1000.
《International Geology Review》2012,54(15):1951-1966
ABSTRACT

U–Pb ages of detrital zircons from the Wedington Sandstone member in northwest Arkansas provide evidence for Late Mississippian westward transcontinental sediment transport from the Appalachian foreland. The Late Mississippian Wedington Sandstone member of the Fayetteville Shale is a fine- to medium-grained quartzarenite. It separates the Fayetteville Shale into informal lower and upper intervals, and was deposited as a small constructive delta complex that prograded towards the south and southeast during the Late Mississippian. As a major influx of clastic sediments, the Wedington Sandstone member records the sediment source and dispersal in the mid-continent during the Late Mississippian. A total of 559 detrital zircon grains from six Wedington samples were recovered for U–Pb detrital zircon geochronological analysis. Results show that age distributions can be subdivided into six groups: ~350–500, ~900–1350, ~1360–1500, ~1600–1800, ~1800–2300, and > ~2500 Ma, and are characterized by a prominent peak for the age group of ~900–1350 Ma, a major peak at ~1600–1800 Ma, and a few other minor age clusters. Regional correlation and geological evidence from surrounding areas suggest that the transcontinental sediment dispersal started as early as the Late Mississippian. U–Pb detrital zircon age distribution suggests that the Wedington Sandstone member was likely derived from the Appalachian foreland with contributions from the Nemaha Ridge to the west where the Yavapai–Mazatzal sources were exposed during the Late Mississippian. Sediment was likely transported westward through or around the Illinois Basin, merged with mid-continent sediment, and then entered into its current location in northwest Arkansas. Transportation of this sediment from mixed sources continued along its course to the south, forming a delta on the Northern Arkansas Structural Platform.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号