首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2089篇
  免费   469篇
  国内免费   1070篇
测绘学   15篇
大气科学   25篇
地球物理   307篇
地质学   2799篇
海洋学   196篇
天文学   14篇
综合类   169篇
自然地理   103篇
  2024年   17篇
  2023年   54篇
  2022年   78篇
  2021年   90篇
  2020年   105篇
  2019年   118篇
  2018年   105篇
  2017年   104篇
  2016年   133篇
  2015年   127篇
  2014年   206篇
  2013年   181篇
  2012年   230篇
  2011年   172篇
  2010年   142篇
  2009年   143篇
  2008年   177篇
  2007年   147篇
  2006年   138篇
  2005年   144篇
  2004年   117篇
  2003年   92篇
  2002年   98篇
  2001年   78篇
  2000年   74篇
  1999年   79篇
  1998年   66篇
  1997年   81篇
  1996年   55篇
  1995年   36篇
  1994年   42篇
  1993年   35篇
  1992年   29篇
  1991年   24篇
  1990年   33篇
  1989年   22篇
  1988年   12篇
  1987年   21篇
  1986年   7篇
  1985年   7篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1978年   2篇
排序方式: 共有3628条查询结果,搜索用时 328 毫秒
101.
The chromites from the alpine type ultramafic intrusive of Sukinda, India, display a typical partly inverse spinel form and occur in two distinct zones: Brown Ore Zone (BOZ) and Grey Ore Zone (GOZ). The host ultramafites are mostly altered and are represented by the serpentinite, tremolite-talc(chlorite) schist, talc-serpentine schist and chlorite rock. The less altered variants are dunite, harzburgite and websterite. A dyke of orthopyroxenite runs through the main ultramafic body.The composition of olivine (Fo92), orthopyroxene (En92–89) and Al2O3 contents of the parental liquid (10.40–11.45%) determined from chromites, suggest that the parent melt is of boninitic affinity. The chemical plot of TiO2 content against cr# of chromites corroborates a boninitic parental melt. The Fe–Mg partitioning in olivine and chromite depicts the temperature for chromitites as 1200 °C. A compositional plot of mg# and cr# suggests crystallization at high pressure conditions, corresponding to the kimberlite xenolith field. From the PT diagram of pyrolite melting and mineral assemblage, the pressure of crystallization is stipulated to be ≥1.2 GPa. The fO2 values estimated from Fe3+/Cr+Al+Fe3+ ratios range from 10−8.3 to 10−9.3 for the GOZ and 10−7.1 to 10−7.3 for the BOZ. The fO2 values together with the pressure range suggest crystallization at upper mantle conditions. The heterogeneity in chemical composition and fO2 conditions for the GOZ and BOZ could be linked to heterogeneity in the upper mantle.  相似文献   
102.
Quartz-rich xenoliths in lavas and pyroclastic rocks from VulcanoIsland, part of the Aeolian arc, Italy, contain silicic meltinclusions with high SiO2 (73–80 wt %) and K2O (3–6wt %) contents. Two types of inclusions can be distinguishedbased on their time of entrapment and incompatible trace element(ITE) concentrations. One type (late, ITE-enriched inclusions)has trace element characteristics that resemble those of themetamorphic rocks of the Calabro-Peloritano basement of theadjacent mainland. Other inclusions (early, ITE-depleted) havevariable Ba, Rb, Sr and Cs, and low Nb, Zr and rare earth element(REE) contents. Their REE patterns are unfractionated, witha marked positive Eu anomaly. Geochemical modelling suggeststhat the ITE-depleted inclusions cannot be derived from equilibriummelting of Calabro-Peloritano metamorphic rocks. ITE-enrichedinclusions can be modelled by large degrees (>80%) of meltingof basement gneisses and schists, leaving a quartz-rich residuerepresented by the quartz-rich xenoliths. Glass inclusions inquartz-rich xenoliths represent potential contaminants of Aeolianarc magmas. Interaction between calc-alkaline magmas and crustalanatectic melts with a composition similar to the analysed inclusionsmay generate significant enrichment in potassium in the magmas.However, ITE contents of the melt inclusions are comparablewith or lower than those of Vulcano calc-alkaline and potassicrocks. This precludes the possibility that potassic magmas inthe Aeolian arc may originate from calc-alkaline parents throughdifferent degrees of incorporation of crustal melts. KEY WORDS: melt inclusions; crustal anatexis; magma assimilation; xenoliths; Vulcano Island  相似文献   
103.
The bimodal NW Etendeka province is located at the continentalend of the Tristan plume trace in coastal Namibia. It comprisesa high-Ti (Khumib type) and three low-Ti basalt (Tafelberg,Kuidas and Esmeralda types) suites, with, at stratigraphicallyhigher level, interstratified high-Ti latites (three units)and quartz latites (five units), and one low-Ti quartz latite.Khumib basalts are enriched in high field strength elementsand light rare earth elements relative to low-Ti types and exhibittrace element affinities with Tristan da Cunha lavas. The unradiogenic206Pb/204Pb ratios of Khumib basalts are distinctive, most plottingto the left of the 132 Ma Geochron, together with elevated 207Pb/204Pbratios, and Sr–Nd isotopic compositions plotting in thelower 143Nd/144Nd part of mantle array (EM1-like). The low-Tibasalts have less coherent trace element patterns and variable,radiogenic initial Sr (  相似文献   
104.
The Vinalhaven intrusive complex consists mainly of coarse-grainedgranite, inward-dipping gabbro–diorite sheets, and a fine-grainedgranite core. Small bodies of porphyry occur throughout thecoarse-grained granite. The largest porphyry body (roughly 0·5km by 2·5 km) occurs with coeval gabbro, hybrid rocks,and minor fine-grained granite in the Vinal Cove complex, whichformed during the waning stages of solidification of the coarse-grainedVinalhaven granite. Porphyry contacts with surrounding coarse-grainedgranite are irregular and gradational. Compositions of wholerocks and minerals in the porphyry and the coarse-grained graniteare nearly identical. Neighboring phenocrysts in the porphyryvary greatly in degree of corrosion and reaction, indicatingthat the porphyry was well stirred. Thermal rejuvenation ofa silicic crystal mush by a basaltic influx can explain thecomposition and texture of the porphyry. Comparable rejuvenationevents have been recognized in recent studies of erupted rocks.Weakly corroded biotite phenocrysts in the porphyry requirethat hydrous interstitial melt existed in the granite duringremelting. Field relations, along with thermal calculations,suggest that cooling and crystallization of coeval mafic magmacould have generated the porphyry by thermal rejuvenation ofgranite crystal-mush containing about 20% melt. Field relationsalso suggest that some of the porphyry matrix may representnew felsic magma that was emplaced during remelting. KEY WORDS: granite; magma chamber; mafic replenishment; rejuvenation  相似文献   
105.
The simultaneous eruption in 1996 of andesite from Karymskyvolcano and of basalt from the Academy Nauk vent 6 km away appearsto provide a case of mafic recharge of an andesite reservoirfor which the time of recharge is exactly known and direct samplesof the recharging magma are available. The explosive phreato-magmaticeruption of basalt was terminated in less than 24 h, whereasandesite erupted continuously during the following 4 years.Detailed petrological study of volcanic ash, bombs and lavasof Karymsky andesite erupted during the period 1996–1999provides evidence for basaltic replenishment at the beginningof the eruptive cycle, as well as a record of compositionalvariations within the Karymsky magma reservoir induced by basalticrecharge. Shortly after the beginning of the eruption the compositionof the matrix glass of the Karymsky tephra became more maficand then, within 2 months, gradually returned to its originalstate and remained almost constant for the following 3 years.Further evidence for basaltic replenishment is provided by thepresence of xenocrysts of basaltic origin in the andesite ofKarymsky. A conspicuous portion of the plagioclase phenocrystsin the Karymsky andesite has calcic cores, with compositionsand textures resembling those of plagioclases in the AcademyNauk basalt. Similarly, the earlier portion of the andesiteof the eruption sequence contains rare olivines, which occuras resorbed cores in pyroxenes. The composition of the olivinematches that of olivines in the Academy Nauk basalt. The sequenceof events appears to be: (1) injection of basaltic magma intothe Karymsky chamber with immediate, compensating expulsionof pre-existing chamber magma from the Karymsky central vent;(2) direct mixing of basaltic and andesitic magmas with dispersalof phenocrysts associated with the basalt throughout the andesiteso that newly mixed magma appeared at the vent within 2 months;(3) re-establishment of thermal and chemical equilibrium withinthe reservoir involving crystallization in the new hybrid liquid,which returned the melt composition to ‘normal’,formed rims on inherited calcic plagioclase, and caused theresorption of dispersed olivine xenocrysts. Taken together,these findings indicate that the Karymsky magma reservoir wasrecharged by basalt at the onset of the 1996 eruptive cycle.The rapidity and thoroughness of mixing of the basalt with thepre-existing andesite probably reflects the modest contrastin temperature, viscosity, and density between the two magmas. KEY WORDS: Karymsky; Kamchatka; magma mixing; andesite; volcanic glass; plagioclase  相似文献   
106.
The Li isotope ratios of four international rock reference materials, USGS BHVO-2, GSJ JB-2, JG-2, JA-1 and modern seawater (Mediterranean, Pacific and North Atlantic) were determined using multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). These reference materials of natural samples were chosen to span a considerable range in Li isotope ratios and cover several different matrices in order to provide a useful benchmark for future studies. Our new analytical technique achieves significantly higher precision and reproducibility (< ± O.3%o 2s) than previous methods, with the additional advantage of requiring very low sample masses of ca . 2 ng of Li.  相似文献   
107.
Iron-reducing activity of autochthonous bacteria from two temporary hydromorphic soils is evaluated by the study of iron reductive dissolution, as a function of water content. The release of ferrous iron in solution is coupled to the mineralization of soil organic carbon. Water soil saturation is not necessary for iron reductive dissolution, since the highest dissolution is obtained for a wet, but not water-saturated soil (100% of water holding capacity WHC), and dissolution is also very high in a soil at 75% WHC. To cite this article: S.J. Stemmler et al., C. R. Geoscience 336 (2004).  相似文献   
108.
109.
110.
Luigi  Beccaluva  Massimo  Coltorti  Emilio  Saccani  Franca  Siena 《Island Arc》2005,14(4):551-563
Abstract Ophiolites of the Mirdita–Subpelagonian zone form a nearly continuous belt in the Albanide–Hellenide orogen, including mid‐ocean ridge basalt (MORB) associations in the western Mirdita sector and supra‐subduction zone (SSZ) complexes, with prevalent island arc tholeiitic (IAT) and minor boninitic affinities in the eastern part of the belt (i.e. eastern Mirdita, Pindos, Vourinos). In addition, basalts with geochemical features intermediate between MORB and IAT (MORB/IAT) are found in the central Mirdita and in the Aspropotamos sequence (Pindos). These basalts alternate with pure MORB and are cut by boninitic dykes. The distinctive compositional characteristics of the mafic magmas parental to the different ophiolitic suites can be accounted for by partial melting of mantle sources progressively depleted by melt extractions. Partial melting processes (10–20%) of lherzolitic sources generated pure MORB, leaving clinopyroxene‐poor lherzolite as a residuum. Approximately 10% water‐assisted partial melting of this latter source, in an SSZ setting, may in turn generate basalts with MORB/IAT intermediate characteristics, whereas IAT basalts and boninites may have been derived from 10–20% and 30% partial melting, respectively, of the same source variably enriched by subduction‐derived fluids. In addition, boninites may also have been derived by comparatively lower degrees of hydrated partial melting of more refractory harzburgitic sources. A generalized petrologic model based on mass balance calculations between bulk rock and mineral compositions, indicate that most of the intrusives (from ultramafic cumulates to gabbronorites and plagiogranites), as well as sheeted dykes and volcanics (from basalts to rhyodacites) forming the bulk crustal section of the SSZ ophiolites, may be accounted for by shallow fractional crystallization from low‐Ti picritic parental magmas very similar in composition to IAT picrites from Pacific intraoceanic arcs. The most appropriate tectono‐magmatic model for the generation of the SSZ Tethyan ophiolites implies low velocity plate‐convergence of the intraoceanic subduction and generation of a nascent arc with IAT affinity and progressive slab roll‐back, mantle diapirism and extension from the arc axis to the forearc region, with generation of MORB/IAT intermediate basalts and boninitic magmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号