首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   487篇
  免费   51篇
  国内免费   183篇
地球物理   51篇
地质学   633篇
海洋学   21篇
综合类   7篇
自然地理   9篇
  2024年   6篇
  2023年   8篇
  2022年   13篇
  2021年   16篇
  2020年   22篇
  2019年   23篇
  2018年   35篇
  2017年   26篇
  2016年   22篇
  2015年   23篇
  2014年   29篇
  2013年   32篇
  2012年   41篇
  2011年   32篇
  2010年   21篇
  2009年   35篇
  2008年   34篇
  2007年   31篇
  2006年   31篇
  2005年   37篇
  2004年   30篇
  2003年   27篇
  2002年   17篇
  2001年   16篇
  2000年   17篇
  1999年   20篇
  1998年   15篇
  1997年   15篇
  1996年   11篇
  1995年   10篇
  1994年   11篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1978年   1篇
排序方式: 共有721条查询结果,搜索用时 15 毫秒
261.
《International Geology Review》2012,54(10):1246-1275
The Maçka subvolcanic intrusions (MSIs) in the eastern part of the Sakarya zone, northeastern Turkey, play a critical role in understanding the petrogenetic and geodynamic processes that took place during the growth of Late Cretaceous arc crust of this region. U–Pb zircon (79.97 ± 0.97 Ma) and two 40Ar–39Ar amphibole ages (average 81.37 ± 0.5 Ma) indicate that the MSIs were emplaced in Late Cretaceous (Campanian) time into the coeval volcanic rocks. A slightly younger zircon fission track (FT) age (73 ± 9 Ma) points to a rapid exhumation and cooling after crystallization. The intrusions are observed in areas less than 1 km2 in the field and contain abundant mafic microgranular enclaves (MMEs). The host rocks (HRs) are entirely composed of tonalite (SiO2 = 63–65 wt.%, Mg# = 43–52), and the MMEs are gabbro-diorite in composition (SiO2 = 53–57 wt.%, Mg# = 45–48). Both the HRs and the MMEs are I-type, high-K calc-alkaline in composition and display a metaluminous character. They are characterized by geochemical features typical for magmas of subduction-related environments. Chondrite-normalized REE patterns are moderately fractionated [(La/Yb)N = 6–11] and display slightly negative Eu anomalies (Eu/Eu* = 0.7–0.9), with weak concave-upward REE patterns, suggesting that amphibole fractionation played a role during their evolution. The MMEs have slightly different ISr (0.7081–0.7085) and εNd (?5.0 to ?5.4) values compared with those of their HRs (ISr = 0.7084–0.7087 and εNd = ?5.7 to ?6.9), indicating that variable amounts of crustal and mantle components were involved in the generation of parental magma to these rocks. All of these data, combined with those of previous regional studies, suggest that the MSIs are hybrid in origin, produced by the mixing of enriched lithospheric mantle- and lower crust-derived melts in an extensional arc setting that was caused by slab rollback.  相似文献   
262.
The North China Craton (NCC) witnessed a prolonged subduction–accretion history from the early to late Palaeoproterozoic, culminating with final collision at ca. 1.85 Ga and assembling the continental blocks into the cratonic framework. Subsequently, widespread post-collisional magmatism occurred, particularly along the Trans-North China Orogen (TNCO) that sutures the Eastern and Western blocks of the NCC. Here we present petrological, geochemical, and zircon U–Pb geochronological and Lu–Hf data from a pyroxenite (websterite)–gabbro–diorite suite at Xinghe in Inner Mongolia along the northern segment of the TNCO. The internal structures and high Th/U values of the zircons from the gabbro–diorite suite suggest magmatic crystallization. LA-ICP-MS U–Pb age data on three gabbros and one diorite from the suite yield emplacement ages of 1786.1 ± 4.8, 1783 ± 15 ,1754 ± 16 and 1767 ± 13 Ma, respectively. The εHf(t) shows mostly positive values (up to 5.8), with the lowest value at –4.2, suggesting that the magma was derived from dominantly juvenile sources. The generally low SiO2 and high MgO values, and other trace element features of the Xinghe suite are consistent with fractionation from a mantle-derived magma with a broadly E-MORB affinity, with no significant crustal contamination. Recent studies clearly establish that the major magmatic pulse associated with rifting of the NCC within the Columbia supercontinent occurred in the late Mesoproterozoic at ca. 1.3–1.2 Ga associated with mantle plume activity. This, together with the lack of robust geochemical imprints of rift-related magmatism in the Xinghe suite, prompts us to suggest a tectonic model that envisages magma genesis associated with post-collisional extension during slab break-off, following the westward subduction of the Eastern Block and its collision with the Western Block. The resulting asthenospheric upwelling and heat input might have triggered the magma generation from a heterogeneous, subduction-modified sub-lithospheric mantle source for the Xinghe rocks, as well as for similar late Palaeoproterozoic suites in the TNCO.  相似文献   
263.
《International Geology Review》2012,54(11):1391-1408
ABSTRACT

Rocks of the early Neoproterozoic age of the world have remained in discussion for their unique identity and evolutionary history. The rocks are also present in Sindh province of Pakistan and have been in debate for a couple of years. Yet, these igneous rocks have been studied very poorly regarding U-Pb and Lu-Hf age dating. The early Neoproterozoic rocks located in Nagarparkar town of Sindh have been considered as shoulder of Malani Igneous Suite (MIS) discovered in Southwest of India. The Nagarparkar Igneous Complex (NPIC) rocks are low-grade metamorphosed, mafic and silicic rocks. These rocks are accompanied by felsic and mafic dikes. Two types of granite from NPIC have been identified as peraluminous I-type biotite granites (Bt-granites), of medium-K calc-alkaline rocks series and A-type potash granites (Kfs-granites) of high-K calc-alkaline rocks series. Geochemical study shows that these Kfs-granites are relatively high in K and Na contents and low MgO and CaO. The Bt-granites have positive Rb, Ba, and Sr with negative Eu anomalies rich with HFSEs Zr, Hf, and slightly depleted HREEs, whereas Kfs-granites have positive Rb with negative Ba, Sr, and Eu anomalies and have positive anomalies of Zr and Hf with HREEs. In addition, these rocks possess crustal material, which leads to the enrichment of some incompatible trace elements and depletion of Sr and Ba in Kfs-granites and relatively high Sr and Ba in Bt-granites, indicating a juvenile lower continental crust affinity. Zircon LA-ICP-MS U-Pb dating of these granites yielded weighted mean 206Pb/238U ages ranging from 812.3 ± 14.1 Ma (N = 18; MSWD = 3.7); and 810 ± 7.4 Ma (N = 16; MSDW = 0.36) for the Bt-granites, and 755.3 ± 7.1 Ma (N = 21; MSDW = 2.0); NP-GG-01 and 736.3 ± 4.3 Ma (N = 24; MSWD = 1.05) for Kfs-granites, respectively. The Bt-granites and Kfs-granites have positive zircon εHf(t) values, which specify that they are derived from a juvenile upper and lower continental crust. Based on the geochemical and geochronological data, we suggest that the Bt-granites were formed through lower continental crust earlier to the rifting time, whereas the Kfs-granites were formed via upper continental crust, during crustal thinning caused by Rodinia rifting. These zircon U-Pb ages 812 to 736 Ma, petrographic, and geochemical characteristics match with those of the adjacent Siwana, Jalore, Mount Abu, and Sirohi granites of MIS. Thus, we can suggest that NPIC granites and adjacent MIS can possibly be assumed as a missing link of the supercontinent Rodinia remnants.  相似文献   
264.
《International Geology Review》2012,54(16):2083-2095
Early Eocene adakitic volcanic and granitoid rocks are widespread in the Eastern Pontides of NE Turkey, providing significant constraints for the early Cenozoic tectonomagmatic evolution of the region. These adakitic rock units exhibit relatively high Sr/Y and La/Yb ratios, but low Y and Yb values, similar to modern adakites generated by partial fusion of a subducted oceanic slab. They also have high K2O and low MgO contents, and show moderately enriched ISr and low ?Nd(t) isotopic signatures. Our trace element modelling suggests that these adakitic magmas were generated from partial melting at low pressures of a garnet-bearing amphibolitic source in the continental lower crust. This lower crustal melting resulted from slab break off-induced asthenospheric upwelling and related magmatic underplating beneath the Eastern Pontides. We interpret this melting event and the adakitic magmatic activity as a syn- to post-collisional process involving early Cenozoic collision of the Pontide and Anatolide–Tauride continental blocks. The geochemical and tectonic constraints presented here indicate that early Eocene adakitic magmatism in the Eastern Pontides did not result from partial fusion of a subducted oceanic slab, but instead represent continental-type adakite formation.  相似文献   
265.
钦州湾-杭州湾构造结合带(南段)地质演化和找矿方向   总被引:14,自引:0,他引:14  
钦州湾-杭州湾结合带是位于扬子与华夏两大古陆块中间的巨型构造结合带。根据内部结构不均一性和演化历史的差异,钦-杭结合带可划分为3段:北(东)段、中段和南(西)段,分界线大致为北纬24°和北纬27°。中段与南岭带大体一致;北段指南岭以北地区,即绍兴-江山-萍乡一带;南段位于南岭以南区域,大致与云开-十万大山带相当。钦-杭结合带南段是华南大陆壳再造和矿产资源寻找的重要研究课题。它的地质演化与钦-杭结合带具有整体一致性,特别是具有一致的开-合历史。震旦系底部的粤西云浮大降坪块状硫化物矿床是海底喷流沉积的产物,它与信宜和陆川新元古代蛇绿岩等是南段洋壳存在的重要证据。在进一步的矿床勘查中,要重视斑岩型铜(钼)矿床的寻找。中酸性斑岩体来自于元古宙岛弧底部玄武质岩石(下地壳)在中生代时期的部分熔融,本质上该类矿床带有岛弧俯冲环境的基因。  相似文献   
266.
The presence of granitoid clasts in Devonian sequences of the Mt Morgan area has been considered indicative of a Late Devonian age, with the clasts derived from the Middle Devonian (377 Ma) Mt Morgan Trondhjemite. However, a sequence of limestone and volcanolithic arenites and breccias containing Middle Devonian corals and conodonts, overlies a granitoid‐bearing conglomerate in Station Creek. This sequence, previously mapped as Dee Volcanics, is now assigned to the Raspberry Creek Formation of the Capella Creek Group. Petrographic and geochemical similarities between the granitoid clasts and phases of the Mt Morgan Trondhjemite indicate formation in similar tectonic environments by similar magmatic processes. These clasts were derived from either an earlier phase of Mt Morgan Trondhjemite magmatism, or from a discrete earlier magmatic episode of similar type and inferred tectonic setting to the Mt Morgan intrusion.  相似文献   
267.
The Proterozoic Soldiers Cap Group, a product of two major magmatic rift phases separated by clastic sediment deposition, hosts mineralised (e.g. Pegmont Broken Hill‐type deposit) and barren iron oxide‐rich units at three main stratigraphic levels. Evaluation of detailed geological and geochemical features was carried out for one lens of an apatite‐garnet‐rich, laterally extensive (1.9 km) example, the Weatherly Creek iron‐formation, and it was placed in the context of reconnaissance studies of other similar units in the area. Chemical similarities with iron‐formations associated with Broken Hill‐type Pb–Zn deposit iron‐formations are demonstrated here. Concordant contact relationships, mineralogy, geochemical patterns and pre‐deformational alteration all indicate that the Soldiers Cap Group iron‐formations are mainly hydrothermal chemical sediments. Chondrite normalised REE patterns display positive Eu and negative Ce anomalisms, are consistent with components of both high‐temperature, reduced, hydrothermal fluid (≥250°C) and cool oxidised seawater. Major element data suggest a largely mafic provenance for montmorillonitic clays and other detritus during chemical sedimentation, consistent with westward erosion of Cover Sequence 2 volcanic rocks, rather than local mafic sources. Ni enrichment is most consistent with hydrogenous uptake by Mn‐oxides or carbonates. Temperatures inferred from REE data indicate that although they are not strongly enriched, base metals such as Pb and Zn are likely to have been transported and deposited prior to or following iron‐formation deposition. Most chemical sedimentation pre‐dated emplacement of the major mafic igneous sill complexes present in the upper part of the basin. Heating of deep basinal brines in a regional‐scale aquifer by deep‐seated mafic magma chambers is inferred to have driven development of hydrothermal fluids. Three major episodes of extension exhausted this aquifer, but were succeeded by a final climactic extensional phase, which produced widespread voluminous mafic volcanism. The lateral extent of the iron‐formations requires a depositional setting such as a sea‐floor metalliferous sediment blanket or series of brine pools, with iron‐formation deposition likely confined to much smaller fault‐fed areas surrounded by Fe–Mn–P–anomalous sediments. These relationships indicate that in such settings, major sulfide deposits and their associated chemical sediment marker horizons need not overlie major igneous sequences. Rather, the timing of expulsion of hydrothermal fluid reflects the interplay between deep‐seated heating, extension and magmatism.  相似文献   
268.
中国东部中生代岩浆活动与太平洋板块向西俯冲有关吗?   总被引:13,自引:0,他引:13  
通常认为,中国东部中生代岩浆活动与太平洋板块的向西俯冲有关,而本文的研究表明,中生代时中国东部不属于环太平洋构造带,不处于安第斯活动陆缘环境,没有岛弧玄武岩和岛弧花岗岩.许多资料表明,在中生代早期,太平洋板块基本上是向北俯冲的,至早白垩世中期(125 Ma左右)才转向西俯冲,而中国东部大规模岩浆活动主要发生于侏罗纪—早白垩世(约180~130 Ma),因此,中国东部中生代大规模岩浆活动与太平洋板块的向西俯冲无关.太平洋板块真正向西俯冲的时间非常短暂,只有125~110 Ma和43~0 Ma两个时段.在前一时段,中国东部岩浆活动仅限于中国东部沿海;在后一个时段,中国东部岩浆活动几乎绝迹.因此,中国东部中生代大规模岩浆活动与太平洋板块向西俯冲有关的命题是错误的.  相似文献   
269.
270.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号