首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7414篇
  免费   1585篇
  国内免费   2256篇
测绘学   911篇
大气科学   2050篇
地球物理   1719篇
地质学   3073篇
海洋学   1531篇
天文学   354篇
综合类   496篇
自然地理   1121篇
  2024年   39篇
  2023年   96篇
  2022年   257篇
  2021年   352篇
  2020年   357篇
  2019年   382篇
  2018年   379篇
  2017年   410篇
  2016年   378篇
  2015年   421篇
  2014年   505篇
  2013年   616篇
  2012年   508篇
  2011年   504篇
  2010年   448篇
  2009年   566篇
  2008年   544篇
  2007年   576篇
  2006年   530篇
  2005年   453篇
  2004年   423篇
  2003年   328篇
  2002年   322篇
  2001年   260篇
  2000年   236篇
  1999年   214篇
  1998年   181篇
  1997年   172篇
  1996年   164篇
  1995年   108篇
  1994年   99篇
  1993年   98篇
  1992年   82篇
  1991年   55篇
  1990年   54篇
  1989年   30篇
  1988年   26篇
  1987年   21篇
  1986年   12篇
  1985年   13篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   8篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
991.
为了探究海表温度和海面高度之间的瞬时相关性,介绍了一种卫星测高数据的拉格朗日分析指数--有限尺度李雅普诺夫指数(Finite Size Lyapunov Exponent,FSLE),以黑潮延伸体区域的涡旋和南大西洋的亚南极锋为例,通过对观测、模式结果和融合产品结果的分析,探讨了该指数与海表温度梯度(Sea Surface Temperature Gradient,SSTG)之间的相关性。比较FSLE图像和SSTG图像发现,FSLE与SSTG均呈丝状结构,对海洋表层水体结构描述具有一致性,尤其在温度梯度大和地转流强的区域更为一致。二者的一致性要远好于其他常用方式,比如全流速、OW参数涡旋识别方法和Winding-Angle涡旋识别方法。不同区域FSLE与SSTG之间的相关性表现不同,黑潮延伸体区域相关系数存在显著的季节变化,而南大西洋亚南极锋区域季节内变化突出。  相似文献   
992.
INTRODUCTIONThemonsoonhasacirculationfeaturethatisplanetaryinscaleandanidentifiablesignalregardingitssubsequentintensitysomeninemonthspriortotheactivestageofthesummermonsoon(WebsterandYang,1992).Furthermore,themagnitudeofthemonsoonvariabilityissubstantia…  相似文献   
993.
Acidic species, such as Nitrate, in polar snow and firn layers are “reversibly” deposited, and are sufficiently volatile to undergo significant postdepositional exchange between snow/firn and the atmosphere. Through comparison of the snowpit and snowpack nitrate concentrations from central East Antarctica and the headwater of ürumqi River, we conclude that the nitrate peaks in the uppermost surface snow layers in central Antarctica are not related to an atmospheric signal and must account for post-depositional effects. Such effects, however, are not found in the surface snowpack nitrate profiles from the headwater of ürumqi River. Two reasons may account for the post-depositional difference. At first, nitrate in the polar snow and firn layers appears to be hydrated ion, which can be taken up by the atmosphere, while at the headwater of ürumqi River it seems mainly as mineral ion, which assembles the behavior of aerosol-derived species that are “irreversibly” deposited and do not undergo significant post-depositional exchange with the atmosphere. Secondly, the chemical features of the snow and ice on the Antarctica are mainly determined by wet deposition, to the contrary, dry deposition is more significant at the headwater of lUrumqi River than that on the East Antarctic Plateau.  相似文献   
994.
Root zone soil water content impacts plant water availability, land energy and water balances. Because of unknown hydrological model error, observation errors and the statistical characteristics of the errors, the widely used Kalman filter (KF) and its extensions are challenged to retrieve the root zone soil water content using the surface soil water content. If the soil hydraulic parameters are poorly estimated, the KF and its extensions fail to accurately estimate the root zone soil water. The H‐infinity filter (HF) represents a robust version of the KF. The HF is widely used in data assimilation and is superior to the KF, especially when the performance of the model is not well understood. The objective of this study is to study the impact of uncertain soil hydraulic parameters, initial soil moisture content and observation period on the ability of HF assimilation to predict in situ soil water content. In this article, we study seven cases. The results show that the soil hydraulic parameters hold a critical role in the course of assimilation. When the soil hydraulic parameters are poorly estimated, an accurate estimation of root soil water content cannot be retrieved by the HF assimilation approach. When the estimated soil hydraulic parameters are similar to actual values, the soil water content at various depths can be accurately retrieved by the HF assimilation. The HF assimilation is not very sensitive to the initial soil water content, and the impact of the initial soil water content on the assimilation scheme can be eliminated after about 5–7 days. The observation interval is important for soil water profile distribution retrieval with the HF, and the shorter the observation interval, the shorter the time required to achieve actual soil water content. However, the retrieval results are not very accurate at a depth of 100 cm. Also it is complex to determine the weighting coefficient and the error attenuation parameter in the HF assimilation. In this article, the trial‐and‐error method was used to determine the weighting coefficient and the error attenuation parameter. After the first establishment of limited range of the parameters, ‘the best parameter set’ was selected from the range of values. For the soil conditions investigated, the HF assimilation results are better than the open‐loop results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
995.
In climate models, the land–atmosphere interactions are described numerically by land surface parameterization (LSP) schemes. The continuing improvement in realism in these schemes comes at the expense of the need to specify a large number of parameters that are either directly measured or estimated. Also, an emerging problem is whether the relationships used in LSPs are universal and globally applicable. One plausible approach to evaluate this is to first minimize uncertainty in model parameters by calibration. In this paper, we conduct a comprehensive analysis of some model diagnostics using a slightly modified version of the Simple Biosphere 3 model for a variety of biomes located mainly in the Amazon. First, the degree of influence of each individual parameter in simulating surface fluxes is identified. Next, we estimate parameters using a multi‐operator genetic algorithm applied in a multi‐objective context and evaluate simulations of energy and carbon fluxes against observations. Compared with the default parameter sets, these parameter estimates improve the partitioning of energy fluxes in forest and cropland sites and provide better simulations of daytime increases in assimilation of net carbon during the dry season at forest sites. Finally, a detailed assessment of the parameter estimation problem was performed by accounting for the decomposition of the mean squared error to the total model uncertainty. Analysis of the total prediction uncertainty reveals that the parameter adjustments significantly improve reproduction of the mean and variability of the flux time series at all sites and generally remove seasonality of the errors but do not improve dynamical properties. Our results demonstrate that error decomposition provides a meaningful and intuitive way to understand differences in model performance. To make further advancements in the knowledge of these models, we encourage the LSP community to adopt similar approaches in the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
996.
Digital elevation models (DEMs) at different resolutions (180, 360, and 720 m) are used to examine the impact of different levels of landscape representation on the hydrological response of a 690‐km2 catchment in southern Quebec. Frequency distributions of local slope, plan curvature, and drainage area are calculated for each grid size resolution. This landscape analysis reveals that DEM grid size significantly affects computed topographic attributes, which in turn explains some of the differences in the hydrological simulations. The simulations that are then carried out, using a coupled, process‐based model of surface and subsurface flow, examine the effects of grid size on both the integrated response of the catchment (discharge at the main outlet and at two internal points) and the distributed response (water table depth, surface saturation, and soil water storage). The results indicate that discharge volumes increase as the DEM is coarsened, and that coarser DEMs are also wetter overall in terms of water table depth and soil water storage. The reasons for these trends include an increase in the total drainage area of the catchment for larger DEM cell sizes, due to aggregation effects at the boundary cells of the catchment, and to a decrease in local slope and plan curvature variations, which in turn limits the capacity of the watershed to transmit water downslope and laterally. The results obtained also show that grid resolution effects are less pronounced during dry periods when soil moisture dynamics are mostly controlled by vertical fluxes of evaporation and percolation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
997.
The North China Plain, which is critical for food production in China, is encountering serious water shortage due to heavy agricultural water requirement. The accurate modelling of carbon dioxide flux and evapotranspiration (ET) in croplands is thus essential for yield prediction and water resources management. The land surface model is powerful in simulating energy and carbon dioxide fluxes between land and atmosphere. Some key processes in the Simple Biosphere Model (Version 2, SiB2) were parameterized based on the observations. The simulated fluxes were tested against the eddy covariance flux measurements over two typical winter wheat/maize double cropping fields. A simple diagnostic parameterisation of soil respiration, not included in SiB2, was added and calibrated using the observations to model the carbon budget. The Ball‐Berry stomatal conductance model was calibrated using observed leaf gas exchange rate, showing that the original SiB2 could significantly underpredict the ET in the wheat field. SiB2 significantly underpredicted soil resistance at the Weishan site, leading to overpredict the ET. Overall, there was a close agreement between the simulated and observed latent heat fluxes and net CO2 exchange using the re‐parameterized SiB2. These findings are important when the model is used for the regional simulation in the North China Plain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
998.
Abstract

Tile drainage influences infiltration and surface runoff and is thus an important factor in the erosion process. Tile drainage reduces surface runoff, but questions abound on its influence on sediment transport through its dense network and into the stream network. The impact of subsurface tiling on upland erosion rates in the Le Sueur River watershed, USA, was assessed using the Water Erosion Prediction Project (WEPP) model. Six different scenarios of tile drainage with varying drainage coefficient and management type (no till and autumn mulch-till) were evaluated. The mean annual surface runoff depth, soil loss rate and sediment delivery ratio (SDR) for croplands, based on a 30-year simulation for the watershed with untiled autumn mulch-till (Scenario 1), were estimated to be 83.5 mm, 0.27 kg/m2 and 86.7%, respectively; on no-till management systems (Scenario 4), the respective results were 72.3 mm, 0.06 kg/m2 and 88.2%. Tile drains reduced surface runoff, soil loss and SDR estimates for Scenario 1 by, on average, 14.5, 8.1 and 7.9%, respectively; and for Scenario 4 by an estimated 31.5, 22.1 and 20.2%, respectively. The impact of tile drains on surface runoff, soil loss and SDR was greater under the no-till management system than under the autumn mulch-till management system. Comparison of WEPP outputs with those of the Soil Water Assessment Tool (SWAT) showed differences between the two methods.

Editor Z.W. Kundzewicz

Citation Maalim, F.K. and Melesse. A.M., 2013. Modelling impacts of subsurface drainage on surface runoff and sediment yield in the Le Sueur Watershed in Minnesota, USA. Hydrological Sciences Journal, 58 (3), 570–586.  相似文献   
999.
Agricultural use of soils implies tillage and often compaction and therefore influences processes on soil surface and affects infiltration of water into the subsoil. Although many studies on soil surface processes or flow patterns in soils exist, works relating both are rare in literature. We did two tracer experiments with Brilliant Blue FCF on a tilled and compacted plot and a non‐tilled one to investigate water storage on the soil surface during simulated rainfall and changes of soil microtopography, to analyse the associated flow patterns in the soil and to relate both to tillage and compaction. Our results show that storage was larger on the tilled and compacted plot than on the non‐tilled one. After tillage, transport processes above the plough pan were partly disconnected from those underneath because macropores were disrupted and buried by the tillage operation. However, preferential flow along cracks occurred on both plots and the macropores buried below the tillage pan still functioned as preferential flow paths. Therefore, we conclude that the studied soil is susceptible to deep vertical solute propagation at dry conditions when cracks are open, irrespective of tillage and compaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
1000.
One of the many significant findings of the Mars Global Surveyor mission is the presence of hundreds of quasi-circular depressions (QCDs) observed from high-resolution MOLA topography data. Their presence has recently been interpreted to reflect a northern lowlands that archive some of the earliest recorded rocks on Mars, mostly below a veneer of Hesperian and Amazonian materials. Here we analyze these data, coupled with a recent synthesis of geologic, geophysical, geomorphic, topographic, and magnetic information. Such analysis allows us to suggest a potential plate tectonic phase during the recorded Early into Middle Noachian martian history that transitioned into a monoplate world with episodic magmatic-driven activity persisting to present. This working hypothesis is based on: (1) the observation that the basement of the northern plains is younger than the basement of the southern highlands, but older than the material exposures of the cratered highlands, suggesting different formational ages for each one of the three geologic-time units; (2) the observation that parts of the very ancient highland's crust are highly magnetized, thus suggesting that most if not all of the formation of the lowlands basement postdates the shut off of the martian dynamo, some 4 Gyr ago, and so allowing hundreds of millions of years for the shaping of the buried lowlands. Consequently, the role of endogenic processes in the earliest geological evolution of Mars (Early perhaps into Middle Noachian) requires reconsideration, since MOLA topographic and MGS magnetic data afford a temporal window sufficient for very early, non-primordial shaping of the northern lowlands' basement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号