首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2772篇
  免费   773篇
  国内免费   856篇
测绘学   380篇
大气科学   251篇
地球物理   1119篇
地质学   1760篇
海洋学   349篇
天文学   94篇
综合类   296篇
自然地理   152篇
  2024年   12篇
  2023年   28篇
  2022年   77篇
  2021年   134篇
  2020年   138篇
  2019年   179篇
  2018年   142篇
  2017年   141篇
  2016年   195篇
  2015年   201篇
  2014年   192篇
  2013年   202篇
  2012年   240篇
  2011年   212篇
  2010年   189篇
  2009年   220篇
  2008年   197篇
  2007年   228篇
  2006年   167篇
  2005年   175篇
  2004年   162篇
  2003年   139篇
  2002年   124篇
  2001年   107篇
  2000年   97篇
  1999年   78篇
  1998年   85篇
  1997年   70篇
  1996年   47篇
  1995年   55篇
  1994年   35篇
  1993年   30篇
  1992年   26篇
  1991年   15篇
  1990年   11篇
  1989年   17篇
  1988年   7篇
  1987年   8篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1976年   1篇
排序方式: 共有4401条查询结果,搜索用时 15 毫秒
31.
Abstract

With the large-scale development and utilization of ocean resources and space, it is inevitable to encounter existing submarine facilities in pile driving areas, which necessitates a safety assessment. In this article, by referring to a wharf renovation project as a reference, the surrounding soil response and buried pipe deformation during pile driving in a near-shore submarine environment are investigated by three-dimensional (3D) numerical models that consider the pore water effect. Numerical studies are carried out in two different series: one is a case of a single pile focusing on the effect of the minimum plane distance of the pile–pipe, and the other is a case of double piles focusing on the effect of the pile spacing.  相似文献   
32.
At present, the barotropic buoyant stability parameter has been derived from a vertical virtual displacement of a water parcel. The barotropic inertial stability parameter in the eccentrically cyclogeostrophic, basic current field was derived in 2003 from a horizontal cross-stream virtual displacement of a parcel. By expressing acceleration of a parcel due to a virtual displacement, which is arbitrarily sloping within a vertical section across the basic current, in terms of natural coordinates, we derived the vertical component of baroclinic buoyant stability parameter B 2 2, the horizontal component of baroclinic inertial stability parameter I 2 2, the baroclinic joint stability parameter J 2, its buoyant component B 2 and its inertial component I 2. B 2 is far greater than I 2 2, and when neglecting relative vorticity except for vertical shear, a downward convex curve of J 2 plotted against the slope of a virtual displacement follows a trend of B 2 curve. If a parcel displaces along a horizontal surface or an isopycnal surface, however, B 2 vanishes, and J 2 becomes equal to I 2. Actual parcel is apt to displace not only along the bottom slope, but also along the sea surface and an isopycnal interfacial surface, which is approximately equivalent to an isentropic surface, preferred by lateral mixing and exchange of momentum. Such actual displacement makes B 2 vanishing, and grants I 2 an important role. The present analysis of I 2 examining effects due to curvature and horizontal and vertical shear vorticities are useful in deepening our understanding of baroclinic instability in actual oceanic streams.  相似文献   
33.
The application of very large floating structure (VLFS) to the utilization of ocean space and exploitation of ocean resources has become one of the issues of great interest in international ocean engineering field. Owing to the advantage of simplicity in structure and low cost of construction and maintenance, box-type VLFS can be used in the calm water area near the coast as the structure configuration of floating airport. In this paper, a 3D linear hydroelastic theory is used to study the dynamic response of box-type VLFS in sinusoidal regular waves. A beam model and a 3D FEM model are respectively employed to describe the dynamic characteristics of the box-type structure in vacuum. A hydrodynamic model (3D potential theory of flexible body) is applied to investigate the effect of different dry models on the hydroelastic response of box-type structure. Based on the calculation of hydroelastic response in regular waves, the rigid body motion displacement, flexible deflection, and the short term and long  相似文献   
34.
Cap-rock seals can be divided genetically into those that fail by capillary leakage (membrane seals) and those whose capillary entry pressures are so high that seal failure preferentially occurs by fracturing and/or wedging open of faults (hydraulic seals). A given membrane seal can trap a larger oil column than gas column at shallow depths, but below a critical depth (interval), gas is more easily sealed than oil. This critical depth increases with lower API gravity, lower oil GOR and overpressured conditions (for the gas phase). These observations arise from a series of modelling studies of membrane sealing and can be conveniently represented using pressure/ depth (P/D) profiles through sealed hydrocarbon columns. P/D diagrams have been applied to the more complex situation of the membrane sealing of a gas cap underlain by an oil rim; at seal capacity, such a two-phase column will be always greater than if only oil or gas occurs below the seal.These conclusions contrast with those for hydraulic seals where the seal capacity to oil always exceeds that for gas. Moreover, a trapped two-phase column, at hydraulic seal capacity will be less than the maximum-allowed oil-only column, but more than the maximum gas-only column. Unlike membrane seals, hydraulic seal capacity should be directly related to cap-rock thickness, in addition to the magnitude of the minimum effective stress in the sealing layer and the degree of overpressure development in the sequence as a whole.Fault-related seals are effectively analogous to membrane cap-rocks which have been tilted to the angle of the fault plane. Consequently, all of the above conclusions derived for membrane cap-rocks apply to both sealing faults sensu stricto (fault plane itself seals) and juxtaposition faults (hydrocarbon trapped laterally against a juxtaposed sealing unit). The maximum-allowed two-phase column trapped by a sealing fault is greater than for equivalent oil-only and gas-only columns, but less than that predicted for a horizontal membrane cap-rock under similar conditions. Where a two-phase column is present on both sides of a sealing fault (which is at two-phase seal capacity), a deeper oil/water contact (OWC) in one fault block is associated with a deeper gas/oil contact (GOC) compared with the adjacent fault block. If the fault seal is discontinuous in the gas leg, however, the deeper OWC is accompanied by a shallower GOC, whereas a break in the fault seal in the oil leg results in a common OWC in both fault blocks, even though separate GOC's exist. Schematic P/D profiles are provided for each of the above situations from which a series of fundamental equations governing single- and two-phase cap-rock and fault seal capacities can be derived. These relationships may have significant implications for exploration prospect appraisal exercises where more meaningful estimates of differential seal capacities can be made.The membrane sealing theory developed herein assumes that all reservoirs and seals are water-wet and no hydrodynamic flow exists. The conclusions on membrane seal capacity place constraints on the migration efficiency of gas along low-permeabiligy paths at depth where fracturing, wedging open of faults and/or diffusion process may be more important. Contrary to previous assertions, it is speculated that leakage of hydrocarbons through membrane seals occurs in distinct pulses such that the seal is at or near the theoretically calculated seal capacity, once this has been initially attained.Finally, the developed seal theory and P/D profile concepts are applied to a series of development geological problems including the effects of differential depletion, and degree of aquifer support, on sealing fault leakage, and the evaluation of barriers to vertical cross-flow using RFT profiles through depleted reservoirs. It is shown that imbibition processes and dynamic effects related to active cross-flow across such barriers often preclude quantitative analysis and solution of these problems for which simulation studies are usually required.  相似文献   
35.
On the basis of the previous studies, the simplest hyperbolic mild-slope equation has been gained and the linear time-dependent numerical model for the water wave propagation has been established combined with different boundary conditions. Through computing the effective surface displacement and transforming into the real transient wave motion, related wave factors will be calculated. Compared with Lin’s model, analysis shows that calculation stability of the present model is enhanced efficiently, because the truncation errors of this model are only contributed by the dissipation terms, but those of Lin’s model are induced by the convection terms, dissipation terms and source terms. The tests show that the present model succeeds the merit in Lin’s model and the computational program is simpler, the computational time is shorter, and the computational stability is enhanced efficiently. The present model has the capability of simulating transient wave motion by correctly predicting at the speed of wave propagation, which is important for the real-time forecast of the arrival time of surface waves generated in the deep sea. The model is validated against analytical solution for wave diffraction and experimental data for combined wave refraction and diffraction over a submerged elliptic shoal on a slope. Good agreements are obtained. The model can be applied to the theory research an d engineering applications about the wave propagation in a biggish area.  相似文献   
36.
37.
杜其方 《地震地质》1989,11(4):31-42
本文讨论了鲜水河活动断裂带炉霍段的水平断错、古地震遗迹与地震重复间隔等问题。晚更新世以来断裂的平均滑动速率为13毫米/年。全新世中期以来大震的重复间隔时间小于600年  相似文献   
38.
本文首先对移位算法的发展史进行简要介绍,然后,在其基础上,根据各移位算法的思想特征,对各移位算法进行归纳,将其划分为七类,并对每一类算法的核心思想进行详细论述,最后,对各类移位算法进行评价,分析其优缺点,总结各类算法中的可借鉴思想,为更好地实现移位奠定基础。  相似文献   
39.
水平井含水率上升影响因素   总被引:1,自引:1,他引:0  
利用塔里木油田塔中4油田(TZ4)底水油藏相关的地质、流体数据建立数值模型。在所建模型的基础上,应用数值模拟计算的累积产油、产水和产液量回归俞启泰水驱特征曲线,以反映水平井见水特征的参数b。以参数b为研究对象,采用正交试验的方法研究不同因素对b值的影响,筛选影响水平井见水特征的主要因素,认为原油粘度、油层厚度、非均质性及水平井水平段在油藏中的位置是影响水平井含水上升趋势的主要指标。最后建立主要因素与b值的关系式,结合俞启泰曲线b值图版,提出预测水平井见水规律的公式——图版法(F-b法)。应用F-b法对塔里木水平井含水率进行预测,并与其他相关方法及实际生产数据对比,认为F-b法可作为预测塔里木油田水平井含水率、估算可采储量的一种有效方法。  相似文献   
40.
大庆长垣外围特低渗透扶杨油层CO_2非混相驱油试验研究   总被引:2,自引:0,他引:2  
大庆长垣外围有3×108t特低渗透的扶杨油层储量在注水开发条件下难以有效动用,为提高这部分储量的有效动用率,开展了CO2非混相驱油试验研究。PVT测试结果表明,扶杨油层原油较稠,体积系数小,膨胀性和收缩性小,溶解系数较低;CO2驱油细管实验最小混相压力为29 MPa,比原始地层压力高8.6 MPa,现场试验为非混相驱;长岩心实验CO2驱油采收率比注水高4~6个百分点。综合室内可行性评价实验结果看,大庆长垣外围扶杨油层开展CO2驱油试验是可行的,并于2003年初在宋芳屯油田南部开辟了注气试验区,有注气井1口,采出井5口。矿场试验结果表明,CO2驱油能够使特低渗透、裂缝不发育的扶杨油层建立起有效驱动体系,从根本上改善其开发效果,该技术有望成为特低渗透扶杨油层有效动用的可行技术。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号