首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1307篇
  免费   327篇
  国内免费   449篇
测绘学   123篇
大气科学   626篇
地球物理   460篇
地质学   449篇
海洋学   30篇
天文学   8篇
综合类   55篇
自然地理   332篇
  2024年   14篇
  2023年   15篇
  2022年   50篇
  2021年   80篇
  2020年   64篇
  2019年   85篇
  2018年   67篇
  2017年   76篇
  2016年   113篇
  2015年   97篇
  2014年   99篇
  2013年   149篇
  2012年   106篇
  2011年   84篇
  2010年   73篇
  2009年   80篇
  2008年   79篇
  2007年   107篇
  2006年   86篇
  2005年   80篇
  2004年   73篇
  2003年   59篇
  2002年   48篇
  2001年   41篇
  2000年   39篇
  1999年   27篇
  1998年   35篇
  1997年   30篇
  1996年   33篇
  1995年   19篇
  1994年   14篇
  1993年   13篇
  1992年   14篇
  1991年   9篇
  1990年   8篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
排序方式: 共有2083条查询结果,搜索用时 15 毫秒
991.
High‐elevation tropical grassland systems, called Páramo, provide essential ecosystem services such as water storage and supply for surrounding and lowland areas. Páramo systems are threatened by climate and land use changes. Rainfall generation processes and moisture transport pathways influencing precipitation in the Páramo are poorly understood but needed to estimate the impact of these changes, particularly during El Niño conditions, which largely affect hydrometeorological conditions in tropical regions. To fill this knowledge gap, we present a stable isotope analysis of rainfall samples collected on a daily to weekly basis between January 2015 and May 2016 during the strongest El Niño event recorded in history (2014–2016) in two Páramo regions of Central America (Chirripó, Costa Rica) and the northern Andes (Cajas, south Ecuador). Isotopic compositions were used to identify how rainfall generation processes (convective and orographic) change seasonally at each study site. Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT) air mass back trajectory analysis was used to identify preferential moisture transport pathways to each Páramo site. Our results show the strong influence of north‐east trade winds to transport moisture from the Caribbean Sea to Chirripó and the South American low‐level jet to transport moisture from the Amazon forest to Cajas. These moisture contributions were also related to the formation of convective rainfall associated with the passage of the Intertropical Convergence Zone over Costa Rica and Ecuador during the wetter seasons and to orographic precipitation during the transition and drier seasons. Our findings provide essential baseline information for further research applications of water stable isotopes as tracers of rainfall generation processes and transport in the Páramo and other montane ecosystems in the tropics.  相似文献   
992.
The coarse resolution soil moisture (SM) data from NASA SMAP mission have been steadily produced with the expected performance since April 2015. These coarse resolution observations could be downscaled to fine resolution using fine scale observations of SM sensitive quantities from existing satellite sensors. For operational users who need near-real-time (NRT) high resolution SM data, the downscaling approach should be feasible for operational implementation, requiring limited ancillary information and primarily depending on readily available satellite observations. Based on these principles, nine potential candidate downscaling schemes were selected for developing an optimal downscaling strategy. Using remotely sensed land surface temperature (LST) and enhanced vegetation index (EVI) observations, the optimal downscaling approach was tested for operational producing a NRT 1 km SM data product from SMAP. Comprehensive assessments on the 1 km SM product were conducted based on agreement statistics with in-situ SM measurements. Statistical results show that the accuracy of the original coarse spatial resolution SMAP SM product can be significantly improved by 8% by the downscaled 1 km SM. With respect to the in-situ measurements, the 1 km SM mapping capability developed here presents a clear advantage over the SMAP/Sentinel SM data product; and it also provides better data availability for users. This study suggests that a NRT 1 km SMAP SM data product could be routinely generated from SMAP at the centre for Satellite Applications and Research of NOAA NESDIS for operational users.  相似文献   
993.
Soil moisture is a key process in the hydrological cycle. During ecological restoration of the Loess Plateau, soil moisture status has undergone important changes, and infiltration of soil moisture during precipitation events is a key link affecting water distribution. Our study aims to quantify the effects of vegetation cover, rainfall intensity and slope length on total infiltration and the spatial variation of water flow. Infiltration data from the upper, middle and lower slopes of a bare slope, a natural grassland and an artificial shrub grassland were obtained using a simulated rainfall experiment. The angle of the study slope was 15° and rainfall intensity was set at 60, 90, 120, 150, and 180 mm/hr. The effect these factors have on soil moisture infiltration was quantified using main effect analysis. Our results indicate that the average infiltration depth (ID) of a bare slope, a grassland slope and an artificial shrub grassland slope was 46.7–73.3, 60–80, and 60–93.3 cm, respectively, and average soil moisture storage increment was 3.5–5.7, 5.0–9.4, and 5.7–10.2 mm under different rainfall intensities, respectively. Heavy rainfall intensity and vegetation cover reduced the difference of soil infiltration in the 0–40 cm soil layer, and rainfall intensity increased surface infiltration differences on the bare slope, the grassland slope and the artificial shrub grassland slope. Infiltration was dominated by rainfall intensity, accounting for 63.03–88.92%. As rainfall continued, the contribution of rainfall intensity to infiltration gradually decreased, and the contribution of vegetation cover and slope length to infiltration increased. The interactive contribution was: rainfall intensity * vegetation cover > vegetation cover * slope length > rainfall * slope length. In the grass and shrub grass slopes, lateral flow was found at a depth of 23–37 cm when the slope length was 5–10 m, this being related to the difference in soil infiltration capacity between different soil layers formed by the spatial cross-connection of roots.  相似文献   
994.
The understanding of the hydrology of plain basins may be improved by the combined analysis of rainfall–run‐off records and remote sensed surface moisture data. Our work evaluates the surface moisture area (SMA) produced during rainfall–run‐off events in a plain watershed of the Argentine Pampas Region, and studies which hydrological variables are related to the generated SMA. The study area is located in the upper and middle basins of the Del Azul stream, characterized by the presence of small gently hilly areas surrounded by flat landscapes. Data from 9 rainfall–run‐off events were analysed. MODIS surface reflectance data were processed to calculate SMA subsequent to the peak discharge (post‐SMA), and previous to the rainfall events (prev‐SMA), to consider the antecedent wetness. Rainfall–run‐off data included total precipitation depth (P), maximum intensity of rainfall over 6 hr (I6max), surface run‐off registered between the beginning of the event and the day previous to the analysed MODIS scene (R), peak flow (Qp), and flood intensity (IF). In contrast with other works, post‐SMA showed a negative relationship with the R. Three groups of cases were identified: (a) Events of low I6max, high prev‐SMA, and low R were associated with slow and weakly channelized flow over plain areas, leading to saturated overland flow (SOF), with large SMA; (b) events of high I6max, low prev‐SMA, and medium to high R were rapidly transported along the gentle slopes of the basin, related to Hortonian overland flow (HOF) and low post‐SMA; and (c) events of medium to high I6max and prev‐SMA with medium R were related to heterogeneous input‐antecedent‐run‐off conditions combined: Local spatial conditions may have produced HOF or SOF, leading to an averaged response with medium SMA. The interactions between the geomorphology of the basin, the characteristics of the events, and the antecedent conditions may explain the obtained results. This analysis is relevant for the general knowledge of the hydrology of large plains, whose functioning studies are still in their early stages.  相似文献   
995.
Páramo soils store high amounts of organic carbon. However, the effects of climate change and changes in land cover and use (LC/LU) in this high‐elevation tropical ecosystem may cause a decrease in their carbon storage capacity. Therefore, better understanding of the factors influencing the Páramo soils' carbon storage and export is urgently needed. To fill this knowledge gap, we investigated the differences in dissolved organic carbon (DOC) content in the soil water of four LC/LU types (tussock grass, natural forest, pine plantations, and pasture) and the factors controlling its variability in the Quinuas Ecohydrological Observatory in south Ecuador. Weekly measurements of soil water DOC concentrations, meteorological variables, soil water content, and temperature from various depths and slope positions were monitored within the soils' organic and mineral horizons between October 2014 and January 2017. These data were used to generate regression trees and random forest statistical models to identify the factors controlling soil water DOC concentrations. From high to low concentrations, natural forest depict the highest DOC concentrations followed by pasture, tussock grass, and pine forest. For all LC/LU types, DOC concentrations increase with decreasing soil moisture. Our results also show that LC/LU is the most important predictor of soil water DOC concentrations, followed by sampling depth and soil moisture. Interestingly, atmospheric variables and antecedent evapotranspiration and precipitation conditions show only little influence on DOC concentrations during the monitoring period. Our findings provide unique information that can help improve the management of soil and water resources in the Páramo and other peat dominated ecosystems elsewhere.  相似文献   
996.
997.
Because of the importance of snow for river discharge in mountain regions, hydrological research often focuses on seasonally snow-covered zones. However, in many basins the majority of the land surface area is intermittently snow-covered. Discharge monitoring in these areas is less common, so their contributions to downstream rivers remain largely unknown. We evaluated hydrological differences between three intermittently snow-covered (mean annual Jan 1–Jul 3 snow persistence <60%) and two seasonally snow-covered headwater catchments in the Colorado Front Range. We compared water balance variables to evaluate how and why discharge differs between the snow zones and estimated the relative contributions from each snow zone to regional river discharge. We focused on water years 2016–2019 and used a combination of in situ sensors and regional climate datasets. Annual discharge from the intermittent snow zone was low for all three catchments (10–77 mm), despite covering a wide range in annual snow persistence (25%–64%), whereas annual discharge from the seasonal snow zone was up to 73 times higher. Soil moisture in the seasonal snow zone was above field capacity for longer periods of time than in the intermittent snow zone, and the intermittent snow zone was uniquely subject to soil freezing (up to 102 days per year). For most of the year, potential evapotranspiration exceeded rainfall and snowmelt inputs in the intermittent snow zone, but was lower than rainfall and snowmelt inputs in the seasonal snow zone. This is likely a primary driver of the differences in soil moisture and discharge for catchments with a seasonal versus intermittent snow cover. Despite the large difference in discharge between these two snow zones, the intermittent snow zone contributed about a quarter of the discharge in the regional river, highlighting the importance of studying discharge generation across all elevations.  相似文献   
998.
Soil moisture is a key modifier of runoff generation from rainfall excess, including during extreme precipitation events associated with Atmospheric Rivers (ARs). This paper presents a new, publicly available dataset from a soil moisture monitoring network in Northern California's Russian River Basin, designed to assess soil moisture controls on runoff generation under AR conditions. The observations consist of 2-min volumetric soil moisture at 19 sites and 6 depths (5, 10, 15, 20, 50, and 100 cm), starting in summer 2017. The goals of this monitoring network are to aid the development of research applications and situational awareness tools for Forecast-Informed Reservoir Operations at Lake Mendocino. We present short analyses of these data to demonstrate their capability to characterize soil moisture responses to precipitation across sites and depths, including time series analysis, correlation analysis, and identification of soil saturation thresholds that induce runoff. Our results show strong inter-site Pearson's correlations (>0.8) at the seasonal timescale. Correlations are strong (>0.8) during events with high antecedent soil moisture and during drydown periods, and weak (<0.5) otherwise. High event runoff ratios are observed when antecedent soil moisture thresholds are exceeded, and when antecedent runoff is high. Although local heterogeneity in soil moisture can limit the utility of point source data in some hydrologic model applications, our analyses indicate three ways in which soil moisture data are valuable for model design: (1) sensors installed at 6 depths per location enable us to identify the soil depth below which evapotranspiration and saturation dynamics change, and therefore choose model soil layer depths, (2) time series analysis indicates the role of soil moisture processes in controlling runoff ratio during precipitation, which hydrologic models should replicate, and (3) spatial correlation analysis of the soil moisture fluctuations helps identify when and where distributed hydrologic modelling may be beneficial.  相似文献   
999.
黄志全  陈宇  宋日英  宋丽娟 《岩土力学》2010,31(6):1759-1762
以三门峡地区黄土状粉质黏土为研究对象,通过控制重塑土样的干密度及含水率制备不同状态下的试样,在改进的三轴仪上采用不排水试验法,分别对试样进行非饱和土三轴试验。试验结果表明,黄土状粉质黏土的基质吸力变化规律与土的基本状态有着密切关系,尤其是在相同含水率、相同围压、不同干密度的状态下基质吸力会随着饱和度的增加,出现先增后减的变化规律。通过单元土体中土颗粒组成的结构体参数,分析了这种变化规律。  相似文献   
1000.
黏土颗粒含量对蒋家沟泥石流启动影响分析   总被引:4,自引:0,他引:4  
黏土颗粒在泥石流中的含量并不大,但却显著地影响着泥石流的启动。在室内通过筛分配成9种不同黏粒含量级配的土体,在自行设计的模型槽内以1.64 g/cm3(松散干密度),1.79、1.94 g/cm3(天然干密度)3种干密度堆成边坡模型,在雨强为85 mm/h下进行人工降雨试验,初步探讨了黏土颗粒含量对泥石流启动的影响,得到:黏粒含量在5%~18%时可以形成泥石流,其中黏粒含量10%时所需时间最短,低于5%或大于18%难以形成泥石流,黏粒含量具有临界性;填筑干密度越大,泥石流启动越困难,表现在启动时间长、深度浅、规模小、且填筑干密度不改变黏粒含量临界性;降雨条件下土体入渗率越高,泥石流越容易启动产流。通过试验的研究,可以深入揭示泥石流形成的内在机制,黏粒含量临界性为泥石流预测、预报提供了新思路。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号