首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5662篇
  免费   1001篇
  国内免费   893篇
测绘学   869篇
大气科学   621篇
地球物理   2118篇
地质学   1864篇
海洋学   658篇
天文学   241篇
综合类   523篇
自然地理   662篇
  2024年   22篇
  2023年   59篇
  2022年   152篇
  2021年   260篇
  2020年   274篇
  2019年   295篇
  2018年   225篇
  2017年   286篇
  2016年   299篇
  2015年   283篇
  2014年   336篇
  2013年   418篇
  2012年   368篇
  2011年   336篇
  2010年   274篇
  2009年   296篇
  2008年   355篇
  2007年   353篇
  2006年   327篇
  2005年   277篇
  2004年   245篇
  2003年   227篇
  2002年   221篇
  2001年   152篇
  2000年   165篇
  1999年   167篇
  1998年   157篇
  1997年   140篇
  1996年   118篇
  1995年   94篇
  1994年   73篇
  1993年   68篇
  1992年   49篇
  1991年   40篇
  1990年   35篇
  1989年   23篇
  1988年   19篇
  1987年   17篇
  1986年   8篇
  1985年   9篇
  1984年   5篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1976年   3篇
  1971年   1篇
  1954年   4篇
排序方式: 共有7556条查询结果,搜索用时 46 毫秒
191.
闫永辉 《探矿工程》2005,32(4):40-42
为适应鄂尔多斯塔巴庙区块勘探开发需要,利用区域测井资料进行钻头选型,并结合现场实践优化钻头类型和钻井参数,提高钻井效率。通过新型PDC钻头推广应用,单口井所需钻头数量减少3~4只,减少起下钻3回次以上,缩短钻井周期3~5天。  相似文献   
192.
本文利用2001-2003年南极中山站175天全天空摄像机观测,对午后多重极光弧的出现率及其与Kp指数的关系进行了统计分析,结果表明午后多重极光弧出现率呈一单峰分布,最大发生率出现在1445UT(1645MLT),其位置在1500MLT极光热点(1300-1700MLT)近夜侧的部分。与地磁活动指数Kp的相关统计分析表明,Kp值为2-3之间时多重极光弧有较大的出现率,这说明中等地磁活动情形下午后多重极光弧有较高的出现率。事件分析表明多重极光弧的强度变化与地磁Pc5脉动具有较高的相关性,并且有类似的频谱特征,这说明午后多重极光弧可能与同时出现的Pc5地磁脉动有关。  相似文献   
193.
随着县级城镇社会经济的迅速发展,城镇居民的休闲时间日渐增多,休闲时间的利用成为人们关注的焦点。以蒙自为案例地的中国经济欠发达地区县级城镇居民的休闲时间利用结构已经日趋多样化,但主要还是集中于看电视、散步、书报业务学习、家庭娱乐、做家务等几项传统休闲方式,家庭内休闲在城镇居民的休闲活动中占了很大比重,这反映出休闲时间利用低水平的问题。县级城镇休闲设施和休闲产业都比较落后,影响了城镇居民休闲质量的提高和休闲消费、休闲经济的发展。因此,政府及有关部门应努力改善城镇的休闲设施,大力发展休闲产业,从多方面引导居民科学、有效、合理地利用休闲时间,最终促进休闲经济的发展,提高城镇居民的生活质量。  相似文献   
194.
This paper presents semi‐analytical solutions to Fredlund and Hasan's one‐dimensional consolidation of unsaturated soils with semi‐permeable drainage boundary under time‐dependent loadings. Two variables are introduced to transform two coupled governing equations of pore‐water and pore‐air pressures into an equivalent set of partial differential equations, which are easily solved by the Laplace transform. The pore‐water pressure, pore‐air pressure and settlement are obtained in the Laplace domain. Crump's method is adopted to perform the inverse Laplace transform in order to obtain semi‐analytical solutions in time domain. It is shown that the present solutions are more general and have a good agreement with the existing solutions from literatures. Furthermore, the current solutions can also be degenerated into conventional solutions to one‐dimensional consolidation of unsaturated soils with homogeneous boundaries. Finally, several numerical examples are provided to illustrate consolidation behavior of unsaturated soils under four types of time‐dependent loadings, including instantaneous loading, ramp loading, exponential loading and sinusoidal loading. Parametric studies are illustrated by variations of pore‐air pressure, pore‐water pressure and settlement at different values of the ratio of air–water permeability coefficient, depth and loading parameters. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
195.
The scaled boundary finite‐element method, a semi‐analytical computational scheme primarily developed for dynamic stiffness of unbounded domains, is applied to the analysis of unsteady seepage flow problems. This method is based on the finite‐element technology and gains the advantages of the boundary element method as well. Only boundary of the domain is discretized, no fundamental solution is required and singularity problems can be modeled rigorously. Anisotropic and non‐homogeneous materials satisfying similarity are modeled with no additional efforts. In this study, firstly, formulation of the method for the transient seepage flow problems is derived followed by its solution procedures. The accuracy, simplicity and applicability of the method are demonstrated via four numerical examples of transient seepage flow – three of them are available in the literature. Homogenous, non‐homogenous, isotropic and anisotropic material properties are considered to show the versatility of the technique. Excellent agreement with the finite‐element method is observed. The method out‐performs the finite‐element method in modeling singularity points. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
196.
Using results from coupled climate model simulations of the 8.2 ka climate event that produced a cold period over Greenland in agreement with the reconstructed cooling from ice cores, we investigate the typical pattern of climate anomalies (fingerprint) to provide a framework for the interpretation of global proxy data for the 8.2 ka climate event. For this purpose we developed an analysis method that isolates the forced temperature response and provides information on spatial variations in magnitude, timing and duration that characterise the detectable climate event in proxy archives. Our analysis shows that delays in the temperature response to the freshwater forcing are present, mostly in the order of decades (30 a over central Greenland). The North Atlantic Ocean initially cools in response to the freshwater perturbation, followed in certain parts by a warm response. This delay, occurring more than 200 a after the freshwater pulse, hints at an overshoot in the recovery from the freshwater perturbation. The South Atlantic and the Southern Ocean show a warm response reflecting the bipolar seesaw effect. The duration of the simulated event varies for different areas, and the highest probability of recording the event in proxy archives is in the North Atlantic Ocean area north of 40° N. Our results may facilitate the interpretation of proxy archives recording the 8.2 ka event, as they show that timing and duration cannot be assumed to correspond with the timing and duration of the event as recorded in Greenland ice cores. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
197.
Watershed structure influences the timing, magnitude, and spatial location of water and solute entry to stream networks. In turn, stream reach transport velocities and stream network geometry (travel distances) further influence the timing of export from watersheds. Here, we examine how watershed and stream network organization can affect travel times of water from delivery to the stream network to arrival at the watershed outlet. We analysed watershed structure and network geometry and quantified the relationship between stream discharge and solute velocity across six study watersheds (11.4 to 62.8 km2) located in the Sawtooth Mountains of central Idaho, USA. Based on these analyses, we developed stream network travel time functions for each watershed. We found that watershed structure, stream network geometry, and the variable magnitude of inputs across the network can have a pronounced affect on water travel distances and velocities within a stream network. Accordingly, a sample taken at the watershed outlet is composed of water and solutes sourced from across the watershed that experienced a range of travel times in the stream network. We suggest that understanding and quantifying stream network travel time distributions are valuable for deconvolving signals observed at watershed outlets into their spatial and temporal sources, and separating terrestrial and in‐channel hydrological, biogeochemical, and ecological influences on in‐stream observations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
198.
The last decade has seen major technical and scientific improvements in the study of water transfer time through catchments. Nevertheless, it has been argued that most of these developments used conservative tracers that may disregard the oldest component of water transfer, which often has transit times greater than 5 years. Indeed, although the analytical reproducibility of tracers limits the detection of the older flow components associated with the most dampened seasonal fluctuations, this is very rarely taken into account in modelling applications. Tritium is the only environmental tracer at hand to investigate transfer times in the 5‐ to 50‐year range in surface waters, as dissolved gases are not suitable due to the degassing process. Water dating with tritium has often been difficult because of the complex history of its atmospheric concentration, but its current stabilization together with recent analytical improvements open promising perspectives. In this context, the innovative contribution of this study lies in the development of a generalized likelihood uncertainty estimation‐based approach for analysing the uncertainties associated with the modelling of transit time due to both parameter identification and tracer analytical precision issues. A coupled resampling procedure allows assessment of the statistical significance of the transfer time differences found in diverse waters. This approach was developed for tritium and the exponential‐piston model but can be implemented for virtually any tracer and model. Stream baseflow, spring and shallow aquifer waters from the Vallcebre research catchments, analysed for tritium in different years with different analytical precisions, were investigated by using this approach and taking into account other sources of uncertainty. The results showed three groups of waters of different mean transit times, with all the stream baseflow and spring waters older than the 5‐year threshold needing tritium. Low sensitivity of the results to the model structure was also demonstrated. Dual solutions were found for the waters sampled in 2013, but these results may be disambiguated when additional analyses will be made in a few years. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
199.
采用甘肃省CORS网和中国大陆构造环境监测网络中共48个台站的GPS观测数据,解算得到观测台站的垂直位移,并与GRACE时变重力场Mascon模型解CSR RL05M数据计算得到的垂直形变进行比较,分析区域地表垂直形变特征。结果表明,研究区内台站垂直形变存在局部特征,甘肃庆阳和平凉地区垂直形变与其他地区存在明显差异,相关系数、均方根减少量和周年信号减少量均高于其他地区;扣除趋势项后,观测台站GPS垂直位移与GRACE垂直形变时间序列相关系数均值为0.72,GPS和GRACE周年信号振幅均值分别为6.00 mm和3.70 mm,周年信号减少量和均方根误差减少量均值分别为0.51和0.29;研究区内GPS垂直位移和GRACE垂直形变时间序列一致性较强,GRACE垂直形变能有效解释50%以上的GPS垂直位移周年信号,GPS垂直位移时间序列包含的非构造形变中平均约29%来源于环境负载变化所引起的负荷形变。  相似文献   
200.
The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust physically based schemes. This has hampered the testing of hypotheses about the implications of such vertical gradients for subsurface flow paths, residence times and transit time distribution. Here we present a general semi‐analytical solution for the simulation of 2D steady‐state saturated‐unsaturated flow in hillslopes with saturated hydraulic conductivity that declines exponentially with depth. The grid‐free solution satisfies mass balance exactly over the entire saturated and unsaturated zones. The new method provides continuous solutions for head, flow and velocity in both saturated and unsaturated zones without any interpolation process as is common in discrete numerical schemes. This solution efficiently generates flow pathlines and transit time distributions in hillslopes with the assumption of depth‐varying saturated hydraulic conductivity. The model outputs reveal the pronounced effect that changing the strength of the exponential decline in saturated hydraulic conductivity has on the flow pathlines, residence time and transit time distribution. This new steady‐state model may be useful to others for posing hypotheses about how different depth functions for hydraulic conductivity influence catchment hydrological response. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号