首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4121篇
  免费   531篇
  国内免费   1186篇
测绘学   25篇
大气科学   120篇
地球物理   956篇
地质学   3460篇
海洋学   755篇
天文学   20篇
综合类   103篇
自然地理   399篇
  2024年   29篇
  2023年   85篇
  2022年   140篇
  2021年   206篇
  2020年   214篇
  2019年   274篇
  2018年   210篇
  2017年   224篇
  2016年   213篇
  2015年   207篇
  2014年   253篇
  2013年   303篇
  2012年   262篇
  2011年   214篇
  2010年   188篇
  2009年   266篇
  2008年   350篇
  2007年   282篇
  2006年   271篇
  2005年   233篇
  2004年   245篇
  2003年   150篇
  2002年   158篇
  2001年   126篇
  2000年   126篇
  1999年   92篇
  1998年   96篇
  1997年   83篇
  1996年   62篇
  1995年   34篇
  1994年   58篇
  1993年   36篇
  1992年   19篇
  1991年   11篇
  1990年   16篇
  1989年   9篇
  1988年   14篇
  1987年   6篇
  1986年   13篇
  1985年   20篇
  1984年   14篇
  1983年   10篇
  1982年   6篇
  1981年   8篇
  1978年   2篇
排序方式: 共有5838条查询结果,搜索用时 31 毫秒
951.
The Chipu Mississippi Valley-type (MVT) deposit is located on the southwest (SW) margin of the Sichuan Basin. Occurrence of plentiful organic matter (bitumen) at this deposit and abundant hydrocarbon reservoirs in the SW Sichuan Basin implies a link between lead–zinc mineralization and hydrocarbon systems in this area. The high δ34S values of most metal sulphides from the different ore stages suggest that H2S-bearing gases and/or thermochemical sulphate reduction (TSR) by organic matter could have been the source of reduced sulphur involved in ore formation. Sulphides with small positive to negative δ34S values can be attributed to organically bound sulphur at the Chipu deposit. Carbon and oxygen isotopic compositions from sparry carbonates suggest mixing of organic carbon with seawater-derived carbon in the mineralization process. From the early to the later ore stages, δ13CPDB values of ore-hosting carbonates are increasingly more negative, which indicates strengthening of the TSR role during mineralization. Hydrogen and oxygen isotopes in fluid inclusions in the quartz gangue indicate the provenance of the ore-forming fluids in the hydrocarbons. Moreover, some extremely low hydrogen isotope values suggest the addition of hydrogen from the same source. The low H/C ratios and high non-hydrocarbon component of the bitumen (Zhang et al. 2010 Zhang, C.Q., Yu, J.J., Mao, J.W., Yu, H. and Li, H.M. 2010. Research on the biomarker from Chipu Pb-Zn Deposit, Sichuan. Acta Sedimentologica Sinica, 28: 832844. v.p.in Chinese with English abstract [Google Scholar]) also suggest that the organic matter may have been involved in TSR and subjected to a strong oxidation by ore-bearing fluids. This study attempts to explain the lead–zinc mineralization process and the role of organic matter in it. As there is a demonstrable relationship between the evolution of the hydrocarbons and regional lead–zinc mineralization along the SW edge of the Sichuan Basin, we propose a possible model in which the MVT mineralization coincided with the degradation of hydrocarbon reservoirs due to the large-scale migration of basinal fluids, most likely driven by the late Indosinian orogeny in response to the closure of the Palaeo-Tethys Ocean.  相似文献   
952.
《International Geology Review》2012,54(12):1471-1489
The Plat Sjambok Anorthosite crops out near Prieska Copper Mines in the Namaqua–Natal Province of southern Africa. It is a massif-type anorthosite, previously regarded as a late-tectonic intrusion and part of the ca. 1100 Ma bimodal Keimoes Suite. Our new ion probe U–Pb zircon data show that the Plat Sjambok massif intruded at 1259 ± 5 Ma, before the 1220 Ma Namaqua collision events and is thus approximately 150 million years older than the Keimoes Suite. Despite the proximity to Prieska Mines, the anorthosite is located in the Kaaien Terrane close to the Brakbos Fault, which is the boundary with the Areachap Terrane in which Prieska Mines is situated. We dated the Nelspoortjie Tonalite, the main country rock of the Plat Sjambok Anorthosite, by laser ablation ICPMS at 1273 ± 13 Ma. Both intrusions thus originated concurrently with the 1286–1241 Ma volcanic rocks of the Areachap Group, which developed in a subduction-related arc setting, prior to its collision with the Kaaien Terrane and Kaapvaal Craton. Metamorphic zircon rims in the Plat Sjambok Anorthosite give an age of 1122 ± 7 Ma, a time that corresponds to a quiet period in the Areachap Terrane. We propose a tectonic model in which formation of the Nelspoortjie Tonalite and Plat Sjambok Anorthosite was driven by intrusions from the mantle into a back-arc related tensional environment within the Kaaien Terrane, possibly situated above an Archaean crustal tongue. This led to heating in a thickened crustal setting in which the tonalite originated as a partial melt of amphibolite. The anorthosite then formed as a mixture of mantle-derived gabbro and Archaean crustal rocks, which explains the 2100–2600 Ma zircon–Hf crustal residence ages and the Sm–Nd trend towards an old crustal source. The anorthosite and its country rocks were only juxtaposed with the Prieska Copper Mining District by late-tectonic uplift and transpressional movements on the Brakbos Fault towards the end of the Namaqua tectogenesis.  相似文献   
953.
《International Geology Review》2012,54(15):1835-1864
The Yinshan deposit is a large epithermal-porphyry polymetallic deposit, and the timing and petrogenesis of ore-hosting porphyries have been hotly debated. We present new results from geochemical, whole-rock Sr–Nd and zircon U–Pb–Hf–O isotopic investigations. Zircon U–Pb data demonstrate that the quartz porphyry, dacitic porphyry, and quartz dioritic porphyry formed at ?172.2 ± 0.4 Ma, ?171.7 ± 0.5 Ma, and ?170.9 ± 0.3 Ma, respectively. Inherited zircon cores show significant age spreads from ?730 to ?1390 Ma. Geochemically, they are high-K calc-alkaline or shoshonitic rocks with arc-like trace element patterns. They have similar whole-rock Nd and zircon Hf isotopic compositions, yet an increasing trend in ?Nd(t) and ?Hf(t) values typifies the suite. Older (inherited) zircons of the three porphyries display Hf compositions comparable to those of the Jiangnan Orogen basement rocks. In situ zircon oxygen isotopic analyses reveal that they have similar oxygen isotopic compositions, which are close to those of mantle zircons. Moreover, a decreasing trend of δ18O values is present. We propose that the ore-related porphyries of the Yinshan deposit were emplaced contemporaneously and derived from partial melting of Neoproterozoic arc-derived mafic (or ultra-mafic) rocks. Modelling suggests that the quartz porphyries, dacitic porphyries, and quartz dioritic porphyries experienced ?25%, ?10%, and ?10% crustal contaminations by Shuangqiaoshan rocks. Our study provides important constraints on mantle–crust interaction in the genesis of polymetallic mineralization associated with Mesozoic magmatism in southeastern China.  相似文献   
954.
The Triassic Dehnow pluton of NE Iran is a garnet-bearing I-type calc-alkaline metaluminous diorite-tonalite-granodiorite intrusion. The parental magma formed as the result of partial melting of intermediate to felsic rocks in the lower crust. Petrological and geochemical evidence, which indicates a magmatic origin for the garnet, includes: large size (~10–20 mm) of crystals, absence of reaction rims, a distinct composition from garnet in adjacent metapelitic rocks, and similarity in the composition of mineral inclusions (biotite, hornblende) in the garnet and in the matrix. Absence of garnet-bearing enclaves in the pluton and lack of sillimanite (fibrolite) and cordierite inclusions in magmatic garnet suggests that the garnet was not produced by assimilation of meta-sedimentary country rocks. Also, the δ18O values of garnet in the pluton (8.3–8.7‰) are significantly lower than δ18O values of garnet in the metapelitic rocks (12.5–13.1‰). Amphibole-plagioclase and garnet-biotite thermometers indicate crystallization temperatures of 708°C and 790°C, respectively. A temperature of 692°C obtained by quartz-garnet oxygen isotope thermometry points to a closure temperature for oxygen diffusion in garnet. The composition of epidote (Xep) and garnet (Xadr) indicates ~800°C for the crystallization temperature of these minerals. Elevated andradite content in the rims of garnet suggests that oxygen fugacity increased during crystallization.  相似文献   
955.
Granitoid plutons are often difficult to radiometrically date precisely due to the possible effects of protracted and complex magmatic evolution, crustal inheritance, and/or partial re-setting of radiogenic clocks. However, apart from natural/geological issues, methodological and analytical problems may also contribute to blurring geochronological data. This may be exemplified by the Variscan Karkonosze Pluton (SW Poland). High-precision chemical abrasion (CA) ID-TIMS zircon data indicate that the two main rock types, porphyritic and equigranular, of this igneous body were both emplaced at ca. 312 Ma, while field evidence points to a younger age for the latter. This is in contrast to the earlier reported SIMS (SHRIMP) zircon dates that scattered mainly between ca. 322 and 302 Ma. In an attempt to overcome this dispersion, at least in part caused by radiogenic lead loss, the CA technique was used before SHRIMP analysis. The 206Pb/238U age obtained in this way from a sample of porphyritic granite is 322 ± 3 Ma, ~16 Ma older than the untreated zircons; another porphyritic sample yielded a mean age of 319 ± 3 Ma, and the mean age was 318 ± 4 Ma for an equigranular granite sample – all three somewhat older than the age obtained by ID-TIMS. Older SIMS dates of ca. 318–322 Ma might indicate either faint inheritance or that zircon domains crystallized during earlier stages of Karkonosze igneous evolution. The ID-TIMS results have been used to re-assess the whole-rock Rb–Sr data. Excluding a porphyritic granite with excess radiogenic 87Sr, it appears that isotopic homogeneity was achieved for most samples during the 312 Ma event, as shown by a pooled 21-point isochron with an age of 311 ± 3 Ma and an initial 86Sr/86Sr of 0.7067 ± 4. Local crustal contamination by stopping of metapelitic material might account for the more radiogenic Sr isotope signature observed in biotite-rich schlieren. A critical re-evaluation of all available SHRIMP data using the ID-TIMS age of 312 Ma as a benchmark suggests that the observed scatter may be partly attributed to analytical and methodological problems, in particular failing to distinguish subtly discordant spots from truly concordant ones, which is a serious limitation of the microbeam analytical approach. Other likely pitfalls contributing to geochronological scatter are identified in the published Re–Os ages on molybdenite and the 40Ar/39Ar data on micas. A scenario postulating a 15–20 milliion year evolution of the Karkonosze Pluton cannot be established on the basis of available geochronological data, which rather supports a brief igneous event, although a more protracted pre-emplacement evolution is possible. A short timescale for crystallization of large igneous bodies, as suggested by the ID-TIMS data from the Karkonosze Granite, is in line with models of transport of granitic magmas through dikes to form large plutons.  相似文献   
956.
《International Geology Review》2012,54(13):1668-1690
The western Junggar Basin is located on the southeastern margin of the West Junggar terrane, Northwest China. Its sedimentary fill, magma petrogenesis, tectonic setting, and formation ages are important for understanding the Carboniferous tectonic evolution and continental growth of the Junggar terrane and the Central Asian Orogenic Belt. This paper documents a set of new zircon secondary ion mass spectrometry U–Pb geochronological and Hf isotopic data and whole-rock elemental and Sr–Nd isotopic analytical results for the Carboniferous strata and associated intrusions obtained from boreholes in the western Junggar Basin. The Carboniferous strata comprise basaltic andesite, andesite, and dacite with minor pyroclastic rocks, intruded by granitic intrusions with zircon secondary ion mass spectrometry U–Pb ages of 327–324 Ma. The volcanic rocks are calc-alkaline and show low high εNd(t) values (5.3–5.6) and initial 87Sr/86Sr (0.703561–0.703931), strong enrichment in LREEs, and some LILEs and depletion in Nb, Ta, and Ti. Furthermore, they also display high (La/Sm)N (1.36–1.63), Zr/Nb, and La/Yb, variable Ba/La and Ba/Th and constant Th/Yb ratios. These geochemical data, together with low Sm/Yb (1.18–1.38) and La/Sm (2.11–2.53) ratios, suggest that these volcanic rocks were derived from a 5–8% partial melting of a mainly spinel Iherzolite-depleted mantle metasomatized by slab-derived fluids and melts of some sediments in an island-arc setting. In contrast, the granitic intrusions represent typical adakite geochemical features of high Sr and low Y and Yb contents, with no significant Eu anomalies, high Mg#, and depleted εNd(t) (5.6–6.4) and εHf(t) (13.7–16.2) isotopic compositions, suggesting their derivation from partial melting of hot subducted oceanic crust. In combination with the previous work, the West Junggar terrane and adjacent western Junggar Basin are interpreted as a Mariana-type arc system driven by northwestward subduction of the Junggar Ocean, possibly with a tectonic transition from normal to ridge subduction commencing ca. at 331–327 Ma.  相似文献   
957.
古大气CO2浓度重建方法技术研究现状   总被引:1,自引:0,他引:1  
温室气候引起的全球气候变暖越来越引起人们的关注,大气中不断上升的CO2浓度被认为是导致气候变暖的主要因素.地史时期大气CO2浓度变化与温室气候可能存在类似的关系,可提供参考,因而古大气CO2浓度重建是首要任务.总结近年来古大气CO2浓度重建的进展,重点介绍GEOCARB模型模拟、植物叶片气孔参数和同位素指针的方法和技术.GEOCARB模型是反映全球古大气CO2浓度长期变化的碳相关模型;气孔参数方法是使用气孔比例来估计古大气CO2浓度;同位素指针包括成壤碳酸盐、浮游植物有机质生物标记物、钙质浮游有孔虫、古苔藓植物等,其中成壤碳酸盐碳同位素方法使用最为广泛.国内只是在叶片参数研究方面有一些进展,古大气CO2浓度重建工作任重而道远.  相似文献   
958.
The Bianbianshan deposit, the unique gold-polymetal (Au-Ag-Cu-Pb-Zn) veined deposit of the polymetal metallogenic belt of the southern segment of Da Hinggan Mountains mineral province, is located at the southern part of the Hercynian fold belt of the south segment of Da Hinggan Mountains mineral province, NE China. Ores at the Bianbianshan deposit occur within Cretaceous andesite and rhyolite in the form of gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite, chalcopyrite, galena and sphalerite. The deposit is hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite - sericite - quartz zone and an outer seicite - chlorite - calcite - epidote zone between orebodies and wall rocks. δ34 S values of 17 sulfides from ores changing from –1.67 to +0.49‰ with average of –0.49‰, are similar to δ34 S values of magmatic or igneous sulfide sulfur. 206Pb/204Pb, 207Pb/204Pb and 208Pb/ 204Pb data of sulfide from ores range within 17.66–17.75, 15.50–15.60, and 37.64–38.00, respectively. These sulfur and lead isotope compositions imply that ore-forming materials might mainly originate from deep sources. H and O isotope study of quartz from ore-bearing veins indicate a mixed source of deep-seated magmatic water and shallower meteoric water. The ore formations resulted from a combination of hydrothermal fluid mixing and a structural setting favoring gold-polymetal deposition. Fluid mixing was possibly the key factor resulting in Au-Ag-Cu-Pb-Zn deposition in the deposit. The metallogenesis of the Bianbianshan deposit may have a relationship with the Cretaceous volcanic-subvolcanic magmatic activity, and formed during the late stage of the crust thinning of North China.  相似文献   
959.
Tengchong Cenozoic volcanics that have record key information on the tectonic evolution and mantle features of the southeast margin of the Tibetan Plateau are of great importance because of its unique eruption history spanning the entire Quaternary period. Magma origin and evolution of Tengchong Cenozoic volcanic rocks were studied on the basis of Nd-Sr-Pb isotope and major and trace element data from different eruptions in the Ma’anshan area. Different samples within one eruption show relative identical lithologies, chemical and isotopic compositions. However, the geochemical features for the five eruptions are distinct from each other. These volcanic rocks show low Mg# values (<45), moderate to high fractionation of LREEs and HREEs, and enrichment of Pb and Ba and depletion of Nb. Tengchong Cenozoic volcanic rocks were derived from an enriched mantle based on Nd-Sr-Pb isotopic studies. And lines of evidence show that crustal contamination should be involved before the eruption of different periods of Tengchong Cenozoic volcanic rocks. Older subducted components may be responsible for adakite recycling at various stages of evolution, which results in the origin of the enriched mantle source magma accounting for the isotopic features of Tengchong Cenozoic volcanic rocks. Segregated primitive magma pulsating injected into magma chamber, fractional crystallized and contaminated with crust component. Finally, magmas with distinct chemical and isotopic compositions for each eruption formed. The extension of the northeast segment of the Yingjiang tectonic belt triggered the pulsating eruption of the Cenozoic volcanics in the Tengchong area.  相似文献   
960.
The Fenghuangshan skarn-type Cu deposit, Tongling Ore Cluster, Anhui Province, is an important component in the Middle–Lower Yangtze River ore-forming belt. To better understand magmatism and its relationship to mineralization, we investigated geochemical features, ore-forming fluids, and geochronology of the Xinwuli intrusion and the related Fenghuangshan Cu deposit. Lithogeochemical characteristics show that the Xinwuli quartz monzodiorite is formed by mixing magma derived from upper mantle alkaline basalt that has been contaminated by crust materials. C, H and O isotopes indicate that ore-forming fluids mainly come from the magma, with minor amounts of meteoric fluids involved at the late stage. S and Pb isotopic components indicate that ore-forming materials are derived from the mantle. Molybdenite Re–Os isotopic dating yields Re–Os model ages ranging from 139.1±2.4 Ma to 142.0±2.2 Ma, with an isochronal age of 141.1±1.4 Ma, which is consistent with sensitive, high-resolution ion microprobe (SHRIMP) zircon U–Pb ages of quartz monzodiorite and granodiorite in the mining area. Dating analysis yields ages from 136.0±2.0 Ma to 143.0±2.4 Ma for the quartz monzodiorite (a weighted average of 139.4±1.2 Ma) and ages from 136.7±2.0 Ma to 145.3±2.4 Ma for granodiorite (a weighted average of 141.0±1.1 Ma).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号