首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3551篇
  免费   1633篇
  国内免费   1136篇
测绘学   89篇
大气科学   330篇
地球物理   389篇
地质学   3698篇
海洋学   148篇
天文学   8篇
综合类   990篇
自然地理   668篇
  2024年   7篇
  2023年   75篇
  2022年   132篇
  2021年   125篇
  2020年   137篇
  2019年   190篇
  2018年   156篇
  2017年   152篇
  2016年   193篇
  2015年   204篇
  2014年   334篇
  2013年   248篇
  2012年   379篇
  2011年   359篇
  2010年   335篇
  2009年   261篇
  2008年   284篇
  2007年   254篇
  2006年   232篇
  2005年   278篇
  2004年   236篇
  2003年   233篇
  2002年   180篇
  2001年   244篇
  2000年   185篇
  1999年   162篇
  1998年   129篇
  1997年   131篇
  1996年   81篇
  1995年   56篇
  1994年   72篇
  1993年   53篇
  1992年   44篇
  1991年   37篇
  1990年   17篇
  1989年   23篇
  1988年   33篇
  1987年   26篇
  1986年   23篇
  1985年   15篇
  1984年   3篇
  1983年   1篇
  1979年   1篇
排序方式: 共有6320条查询结果,搜索用时 17 毫秒
991.
湖北大冶铜绿山铜铁矿床是长江中下游西段鄂东南矿集区一个大型夕卡岩矿床.围岩为三叠系大理岩及白云质大理岩,决定了其发育丰富的钙镁质复合夕卡岩矿物组合,包括石榴子石、辉石、角闪石、绿帘石、金云母、绿泥石等.本文详细描述了夕卡岩不同阶段矿物的特征,并对矿物进行了电子探针分析(EPMA)及碳、氧、硫稳定同位素研究.结果表明石榴子石形成于三期,成分上属于钙铝—钙铁系列,且从早到晚具有从钙铝向钙铁榴石演化趋势,反映出成矿溶液由酸性向碱性演化.环带结构的石榴子石和绿帘石从核部到边部Fe含量增高,说明磁铁矿是在Fe浓度升高的碱性溶液中沉淀.辉石为透辉石.角闪石属于单斜角闪石中的钙质角闪石,包括透闪石,韭闪石和少量阳起石.矿物成分分析表明辉石和石榴子石的Mn/Fe值与矿化金属元素存在一定的联系.相对于钙质夕卡岩,镁质或含镁质夕卡岩是铜铁矿体交代的更有利岩石.矿床硫化物的δ34 SV-CDT均为正值且变化范围较窄,介于0.6‰~3.8‰.成矿阶段方解石δ13CV-PDB变化于-2.9‰~6.3‰,δ18OV-SMOW变化于9.6‰ ~ 12.6‰,成矿后方解石的同位素值明显增大,δ13CV-PDB为-0.9‰ ~ 1.3‰,δ18OV-SMOW为15.2‰ ~ 17.3‰,趋向于围岩的同位素值.研究结果说明成矿阶段的硫和碳来自于深源或地幔,而成矿后期碳与地层发生明显的同位素交换反应.  相似文献   
992.
青海省东昆仑南坡金铜铅锌多金属成矿带经历了漫长而复杂的地质构造演化历史,产有丰富的金、铜、铅、锌、钼等金属矿产,但在铜钴矿预测中仍存在一些关键科学问题需进一步研究解决。本文在详述了区域地层、侵入岩、变质岩、构造、矿产等区域成矿地质背景的基础上,分析了青海东昆仑南坡成矿带地质工作程度低、研究程度低、成矿预测的基础科学问题不清、矿产勘查项目所引用的基础资料与研究工作所引用的基础资料明显不一致和主要矿床类型及预测方向等主要科学技术问题,探讨了该成矿带铜钴矿产预测现状与预测思路,从而提出了青海东昆仑南坡成矿带开展铜钴矿预测的工作方向。  相似文献   
993.
Abstract

Fluid dynamical and numerical modelling predicts a large-scale regional domal uplift prior to basalt eruptions in large igneous provinces, which can be readily measured when a plume head rises below a shallow marine sedimentary basin. Research on the sedimentology, biostratigraphy, and isotopic chronology of the Emeishan large igneous province demonstrates that the sedimentary environment in the Maokou stage is not uniform carbonate platform facies, but rather sedimentary facies with a north–south linear alignment and west–east different distribution controlled by the syn-depositional normal faulting of the Changhai and Xiaojiang faults, which are the result of underwater dynamic uplift induced by deep mantle activity. The dynamic uplift started in the Maokou stage. Thus, thinning of the Maokou limestone was the product of the difference in the initial depositional thickness caused by the underwater uplift and post-depositional surface uplift and erosion, but post-depositional uplift was much less than kilometre scale. Sedimentary facies differentiation and tectonic–sedimentary evolution in the Maokou stage provide a constraint for the time of the initial eruption and eruption environment before and during the Emeishan basalt eruption. Small-scale magmatic activity might have already begun in the middle of the Maokou stage, whereas submarine and terrestrial sedimentary environments coexisted before and during Emeishan basalt eruption.  相似文献   
994.
Bayana Basin, sited along the eastern margin of the north Delhi fold belt of the Aravalli Craton, contains an ~3000?m-thick sequence comprising one volcanic and seven sedimentary formations of the Delhi Supergroup. The sedimentary units are the Nithar, Jogipura, Badalgarh, Bayana, Damdama, Kushalgarh, and Weir formations in order of decreasing age. Petrographic study of the sandstones as well as major and trace elements (including rare earth elements) and bulk-rock analyses of the shales and sandstones allow the determination of their provenance, source-rock weathering, and basinal tectonic setting. The sandstones are quartz rich and were derived mainly from exhumed granitoids typical of a craton interior. Geochemical patterns of the sandstones and shales are similar. However, trace element abundances are low in sandstones, probably due to quartz dilution. The coarser clastic Damdama and Weir sandstones, which occur at higher stratigraphic levels, have strikingly low trace element concentrations compared with the underlying Bayana and Badalgarh sandstones. All samples show uniform LREE-enriched patterns with negative Eu-anomalies (Eu/Eu*?=?0.16–0.23) and are similar to those of post-Archaean Australian shales (PAAS). However, the (La/Yb) n ratios (averages 11–18) of all the sedimentary units are higher than those of PAAS, except for the Bayana Sandstone, which has low values (average 6.77). The chemical index of alteration (70–78) and the plagioclase index of alteration (87–97) values and the A–CN–K diagram suggest moderate to intense weathering of the source area.

The provenance analyses indicate that basin sedimentation was discontinuous. It received input from a terrain comprising granitoids, mafic rocks, sedimentary sequences, and tonalite-trondhjemite-granodiorite (TTG) suites. The Nithar and Badalgarh sandstones received input from a source consisting predominantly of granitoids. The succeeding Damdama and Weir sandstones received debris from granitoids and TTG in different proportions. The Kushalgarh shale was possibly derived from a source consisting granites and mafic rocks with a TTG component. The pre-existing sedimentary formations also contributed intermittently during the different phases of sedimentation.

Bulk-rock geochemical data suggest Mesoarchaean gneisses and late Archaean granites of BGC/BGGC (Banded Gneissic Complex/Bundelkhand Granitic Gneiss Complex) basement as possible source terrains. These data indicate deposition in a continental rift setting. The coeval formation of many rift-related Proterozoic sedimentary basins in the BGC/BGGC terrain suggests that the North Indian Craton underwent major intracratonic extension during Proterozoic time, probably triggering the break up of Earth's first supercontinent.  相似文献   
995.
Previous studies have obtained some petrogenetic and metallogenic chronological data with SHRIMP (sensitive high-resolution ion microprobe) zircon U-Pb, zircon LA-ICPMS (laser-ablation–inductively coupled plasma mass spectroscopy) U-Pb, molybdenite Re-Os isochron and muscovite Ar-Ar methods in southern Jiangxi Province and its adjacent areas. Based on these, the purpose of this paper is to study the petrogenetic and metallogenic ages and their time gap for different genetic types of W-Sn deposits, and thus to research their numerous episodes, zonal arrangement and their geodynamic background. The result shows that the large-scale W-Sn mineralization in southern Jiangxi Province occurred in the middle to late Jurassic (170–150 Ma), the skarn W-Sn-polymetallic deposits formed much earlier (170–161 Ma), and all of the wolframite – quartz vein type, greisen type, altered granite type and fractured zone type tungsten deposits formed in the late Jurassic (160–150 Ma). In one ore field or ore district, greisen type tungsten deposits formed earlier than quartz vein type ones hosted in the endo- or exo-contact zone; and quartz vein type hosted in the endocontact zone formed earlier than that of exocontact zone. There is no significant time difference between tungsten-tin mineralization and its intimately associated parent granite emplacement (1–6 Ma). They all formed in the same rock-forming and ore-forming system and under the same geodynamic setting. Regionally, rock-forming and ore-forming processes of the W-Sn deposits in the Nanling region (include southern Jiangxi Province, southern Hunan Province, northern Guangdong Province and eastern Guangxi Zhuang Autonomous Region) exhibit numerous episodes. The mineralization in the Nanling region mainly occurred at (240–210) Ma, (170–150) Ma and (130–90) Ma. The tungsten-tin deposits in this region are centered by the largest scale in southern Jiangxi Province and southern Hunan Province, and become small in the east, west, south and north directions. This displays a zonal arrangement and temporal and spatial distribution regularity. Integrated with the latest research results, it is concluded that the W-Sn mineralization in southern Jiangxi Province and its adjacent areas corresponds to the second large-scale mineralization in South China. The Indosinian W-Sn mineralization formed under the extensional tectonic regime between collisional compressional stages, while the Yanshanian large-scale petrogenetic and metallogenic processes occurred in the Jurassic intraplate extensional geodynamic setting of lithosphere extension.  相似文献   
996.
江西省兴源冲地区深部找矿潜力评价   总被引:1,自引:0,他引:1       下载免费PDF全文
江西省兴源冲地区处于九岭南缘逆冲推覆构造系中,NEE向的慈化—宜丰板缘深断裂带及大型推(滑)覆构造西段向南呈弧型转弯并与湘赣边界的NNE向走滑推覆冲断带复合,形成了对铜多金属矿成矿有利的异常构造、岩浆岩、矿源层及赋矿层、矿化异常等控矿因素耦合区。该区具有明显的地、物、化、遥找矿信息:区域1∶20万和1∶5万水系沉积物测量显示Cu,Pb,Zn高异常区;1∶2.5万和1∶1万土壤地化测量已圈定出Cu,Pb,Zn,Au,Ag元素异常多处,综合异常4处;1∶1万激电异常明显;少量探槽、钻孔控制求得333+3341资源量已具小型规模。根据成矿地质条件及物、化异常分析,该区深部找矿潜力较大,有望扩大为中型以上规模铜矿床。  相似文献   
997.
福建省柘荣县马坑银矿产于上侏罗统-下白垩统陆相酸性火山岩中,矿体严格受断裂(F1,F2)及其派生裂隙的控制。矿床发育绢云母化、硅化、黄铁矿化、黄铁绢英岩化、青磐岩化等中低温热液蚀变,矿体地表呈密集细脉状,深部为简单板状、透镜状。矿石矿物以自然银为主,次为辉银矿,含少量方铅矿、闪锌矿等。矿石工业类型为硫化矿,矿床成因为受断裂构造控制的中低温浅成火山热液充填交代型银矿床。  相似文献   
998.
中条裂谷的幔柱构造与成矿   总被引:1,自引:0,他引:1       下载免费PDF全文
中条山地区的地球物理场具有“三低一高”(低波速、低密度、低黏度及高地热异常)特点,变质核杂岩中赋存有科马堤岩并具“双层”结构,火成岩呈“双峰”状态,变质期的古地温为522~608℃,压力0.3~0.73GPa,地热梯度23℃/km,表明中条山地区为新太古代-元古宙的大陆裂谷—地幔热柱构造.其成矿作用存在着“四代同堂”的成矿模式,成矿期与岩浆侵入期的时差甚小;成矿空间上,大多数矿床沿着裂谷内两组断裂呈X型“对称式”展布,有益元素矿物组合及成矿温度自中心向周围呈有规律降低趋势.由于在新太古代以前,富铜的扬子板块俯冲至华北板块之下,促使中条裂谷的地壳加厚,形成丰富的成矿物质场,因为地幔热柱脉动式隆升,热液在运移过程中不断萃取地壳的铜质,故成为区域内独特的铜矿集中区.  相似文献   
999.
赣北石门寺矿区钨多金属矿床成矿地质条件   总被引:8,自引:0,他引:8       下载免费PDF全文
赣北石门寺矿区位于下扬子成矿省江南地块中生代铜钼金银铅锌成矿带中.根据区域地质背景和矿床地质特征,详细分析了矿区围岩、母岩和控矿断裂等成矿地质条件.矿区钨多金属矿床的围岩为晋宁晚期黑云母花岗闪长岩,判断为新元古代在不成熟陆壳基础上发育而成的火山弧同碰撞过程中形成的S型花岗岩;燕山中期似斑状黑云母花岗岩、细粒黑云母花岗岩、花岗斑岩为成矿母岩,属硅、铝过饱和钙碱性岩石,为九岭岩基在陆内碰撞挤压环境下熔融、同源演化而成的S型花岗岩;石门寺断裂与仙果山—大湖塘-狮尾洞基底断裂的交叉部位控制着矿区燕山中期含矿花岗岩的侵位和钨多金属矿床的分布,为矿区的控矿断裂.  相似文献   
1000.
祥霖铺夕卡岩型钨多金属矿床位于南岭纬向构造带的中段,矿床产于NE向、NW向和EW向断裂的交汇处,矿化集中赋存于背斜的倾伏端附近.通过对矿床地质特征、地球物理、地球化学特征等方面的研究,认为燕山期构造运动所导致的岩浆活动为矿床的形成提供了大量热源,区内的断裂构造为成矿提供了良好的构造条件,中泥盆统棋梓桥组在成矿过程中提供了大量的物质来源;在夕卡岩化过程中形成了不同的矿物组合,成矿过程可以分为2个成矿期、4个成矿阶段;预测在矿区的西部有望找到隐伏矿体.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号