首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1864篇
  免费   381篇
  国内免费   613篇
测绘学   30篇
大气科学   60篇
地球物理   523篇
地质学   1550篇
海洋学   259篇
天文学   10篇
综合类   115篇
自然地理   311篇
  2024年   3篇
  2023年   26篇
  2022年   63篇
  2021年   48篇
  2020年   61篇
  2019年   59篇
  2018年   66篇
  2017年   63篇
  2016年   50篇
  2015年   58篇
  2014年   89篇
  2013年   96篇
  2012年   124篇
  2011年   84篇
  2010年   79篇
  2009年   130篇
  2008年   134篇
  2007年   175篇
  2006年   155篇
  2005年   121篇
  2004年   138篇
  2003年   98篇
  2002年   121篇
  2001年   94篇
  2000年   94篇
  1999年   83篇
  1998年   93篇
  1997年   75篇
  1996年   53篇
  1995年   55篇
  1994年   51篇
  1993年   50篇
  1992年   32篇
  1991年   35篇
  1990年   29篇
  1989年   20篇
  1988年   21篇
  1987年   16篇
  1986年   9篇
  1985年   4篇
  1984年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有2858条查询结果,搜索用时 62 毫秒
41.
Daily measurements of atmospheric concentrations of dimethylsulfide (DMS) were carried out for two years in a marine site at remote area: the Amsterdam Island (37°50S–77°31E) located in the southern Indian Ocean. DMS concentrations were also measured in seawater. A seasonal variation is observed for both DMS in the atmosphere and in the sea-surface. The monthly averages of DMS concentrations in the surface coastal seawater and in the atmosphere ranged, respectively, from 0.3 to 2.0 nmol l-1 and from 1.4 to 11.3 nmol m-3 (34 to 274 pptv), with the highest values in summer. The monthly variation of sea-to-air flux of DMS from the southern Indian Ocean ranges from 0.7 to 4.4 mol m-2 d-1. A factor of 2.3 is observed between summer and winter with mean DMS fluxes of 3.0 and 1.3 mol m-2 d-1, respectively.  相似文献   
42.
To investigate the strength of frictional sliding and stability of mafic lower crust, we conducted experiments on oven-dried gabbro gouge of 1 mm thick sandwiched between country rock pieces (with gouge inclined 35° to the sample axis) at slip rates of 1.22 × 10− 3 mm/s and 1.22 × 10− 4 mm/s and elevated temperatures up to 615 °C. Special attention has been paid to whether transition from velocity weakening to velocity strengthening occurs due to the elevation of temperature.Two series of experiments were conducted with normal stresses of 200 MPa and 300 MPa, respectively. For both normal stresses, the friction strengths are comparable at least up to 510 °C, with no significant weakening effect of increasing temperature. Comparison of our results with Byerlee's rule on a strike slip fault with a specific temperature profile in the Zhangbei region of North China shows that the strength given by experiments are around that given by Byerlee's rule and a little greater in the high temperature range.At 200 MPa normal stress, the steady-state rate dependence a − b shows only positive values, probably still in the “run-in” process where velocity strengthening is a common feature. With a normal stress of 300 MPa, the values of steady-state rate dependence decreases systematically with increasing temperature, and stick-slip occurred at 615 °C. Considering the limited displacement, limited normal stress applied and the effect of normal stress for the temperatures above 420 °C, it is inferred here that velocity weakening may be the typical behaviour at higher normal stress for temperature above 420 °C and at least up to 615 °C, which covers most of the temperature range in the lower crust of geologically stable continental interior. For a dry mafic lower crust in cool continental interiors where frictional sliding prevails over plastic flow, unstable slip nucleation may occur to generate earthquakes.  相似文献   
43.
Seismic lamination and anisotropy of the Lower Continental Crust   总被引:2,自引:3,他引:2  
Seismic lamination in the lower crust associated with marked anisotropy has been observed at various locations. Three of these locations were investigated by specially designed experiments in the near vertical and in the wide-angle range, that is the Urach and the Black Forrest area, both belonging to the Moldanubian, a collapsed Variscan terrane in southern Germany, and in the Donbas Basin, a rift inside the East European (Ukrainian) craton. In these three cases, a firm relationship between lower crust seismic lamination and anisotropy is found. There are more cases of lower-crustal lamination and anisotropy, e.g. from the Basin and Range province (western US) and from central Tibet, not revealed by seismic wide-angle measurements, but by teleseismic receiver function studies with a P–S conversion at the Moho. Other cases of lamination and anisotropy are from exhumed lower crustal rocks in Calabria (southern Italy), and Val Sesia and Val Strona (Ivrea area, Northern Italy). We demonstrate that rocks in the lower continental crust, apart from differing in composition, differ from the upper mantle both in terms of seismic lamination (observed in the near-vertical range) and in the type of anisotropy. Compared to upper mantle rocks exhibiting mainly orthorhombic symmetry, the symmetry of the rocks constituting the lower crust is either axial or orthorhombic and basically a result of preferred crystallographic orientation of major minerals (biotite, muscovite, hornblende). We argue that the generation of seismic lamination and anisotropy in the lower crust is a consequence of the same tectonic process, that is, ductile deformation in a warm and low-viscosity lower crust. This process takes place preferably in areas of extension. Heterogeneous rock units are formed that are generally felsic in composition, but that contain intercalations of mafic intrusions. The latter have acted as heat sources and provide the necessary seismic impedance contrasts. The observed seismic anisotropy is attributed to lattice preferred orientation (LPO) of major minerals, in particular of mica and hornblende, but also of olivine. A transversely isotropic symmetry system, such as expected for sub-horizontal layering, is found in only half of the field studies. Azimuthal anisotropy is encountered in the rest of the cases. This indicates differences in the horizontal components of tectonic strain, which finally give rise to differences in the evolution of the rock fabric.  相似文献   
44.
Ion-microprobe U–Pb zircon dating of lower-crust metasedimentary granulite are reported on samples from two localities in Europe in order to determine (a) how this environment recorded the Variscan and eo-Alpine events, and (b) whether the transition between the two orogenic cycles was continuous or separated by a gap. The samples come from enclaves hosted by Miocene volcanoes at Bournac in the French Massif Central, and from the granulitic metasedimentary basement of the Alpine Santa Lucia nappe in Corsica, on the South European paleomargin of the Ligurian branch of the Tethys Sea. The zircon ages from Bournac range between 630 and 430 Ma and between 380 and 150 Ma with a major frequency peak at 285 Ma; the zircons older than 430 Ma are interpreted as detrital, whereas those younger than 380 Ma are considered to have formed by metamorphic processes after burial in the lower crust. Zircon ages from Santa Lucia range from to 356 to 157 Ma, with exception of one inherited Archean grain, and are interpreted like the younger Bournac zircons as having been formed by metamorphic processes.

In a granulite metamorphic environment, as opposed to an anatectic environment, new zircon growth can occur in the solid state. Once Zr has been incorporated into zircon, however, it is difficult to remobilize without dissolution; thus Zr available for new zircon growth must result from the breakdown of Zr-bearing minerals during prograde and/or retrograde events. In this light, the U–Pb zircon-age probability curves are interpreted as markers for major tectonometamorphic events, as suggested by the close correspondence between peaks in the curve and geological events recorded in the upper-crust, such as magma emplacement and basin subsidence.

Evidence of a tectonometamorphic gap between the Variscan and Alpine orogeneses is provided by the Santa Lucia zircon-age probability curve, which reveals a probable interlude during the Variscan–Alpine transition between 240 and 210 Ma. Here, the peak at 240 Ma is interpreted as the very beginning of crustal extension and the low at 210 Ma as a period of quiescence prior to the formation of an active margin and oceanization.  相似文献   

45.
Both adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province, eastern China are associated with Cretaceous Cu–Au mineralization. The Shaxi quartz diorite porphyrites exhibit adakite-like geochemical features, such as light rare earth element (LREE) enrichment, heavy REE (HREE) depletion, high Al2O3, MgO, Sr, Sr / Y and La / Yb values, and low Y and Yb contents. They have low εNd(t) values (− 3.46 to − 6.28) and high (87Sr / 86Sr)i ratios (0.7051–0.7057). Sensitive High-Resolution Ion Microprobe (SHRIMP) zircon analyses indicate a crystallization age of 136 ± 3 Ma for the adakitic rocks. Most volcanic rocks and the majority of monzonites and syenites in the Luzong area are K-rich (or shoshonitic) and were also produced during the Cretaceous (140–125 Ma). They are enriched in LREE and large-ion lithophile elements, and depleted in Ti, and Nb and Ba and exhibit relatively lower εNd(t) values ranging from − 4.65 to − 7.03 and relatively higher (87Sr / 86Sr)i ratios varying between 0.7057 and 0.7062. The shoshonitic and adakitic rocks in the Luzong area have similar Pb isotopic compositions (206Pb / 204Pb = 17.90–18.83, 207Pb / 204Pb = 15.45–15.62 and 208Pb / 204Pb = 38.07–38.80). Geological data from the Luzong area suggest that the Cretaceous igneous rocks are distributed along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China and were likely formed in an extensional setting within the Yangtze Block. The Shaxi adakitic rocks were probably derived by the partial melting of delaminated lower crust at pressures equivalent to crustal thickness of > 50 km (i.e., 1.5 GPa), possibly leaving rutile-bearing eclogitic residue. The shoshonitic magmas, in contrast, originated mainly from an enriched mantle metasomatized by subducted oceanic sediments. They underwent early high-pressure (> 1.5 GPa) fractional crystallization at the boundary between thickened (> 50 km) lower crust and lithospheric mantle and late low-pressure (< 1.5 GPa) fractional crystallization in the shallow (< 50 km) crust. The adakitic and shoshonitic rocks appear to be linked to an intra-continental extensional setting where partial melting of enriched mantle and delaminated lower crust was probably controlled by lithospheric thinning and upwelling of hot asthenosphere along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China. Both the shoshonitic and adakitic magmas were fertile with respect to Cu–Au mineralization.  相似文献   
46.
47.
48.
Geochronological database considered in the work and characterizing the Anabar collision system in the Northeast Siberian craton includes coordinated results of Sm-Nd and Rb-Sr dating of samples from crustal xenoliths in kimberlites, deep drill holes, and bedrock outcrops. As is inferred, collision developed in three stages dated at 2200–2100, 1940–1760, and 1710–1630 Ma. The age of 2000–1960 Ma is established for substratum of mafic rocks, which probably originated during the lower crust interaction with asthenosphere due to the local collapse of the collision prism. Comparison of Sm-Nd and Rb-Sr isochron dates shows that the system cooling from ≈700 to ≈300°C lasted approximately 300 m.y. with a substantial lag relative to collision metamorphism and granite formation. It is assumed that accretion of the Siberian craton resulted in formation of a giant collision mountainous structure of the Himalayan type that was eroded by 1.65 Ga ago, when accumulation of gently dipping Meso-to Neoproterozoic (Riphean) platform cover commenced.  相似文献   
49.
中国近海及邻近海域高精度高分辨率海面高的确定   总被引:1,自引:0,他引:1  
利用新的海潮模型(NAO99B)更为合理的共线方法和交叠平差技术,有效改善了ERM数据的径向轨道误差和时变海面高的影响,提高了浅海海域测高数据的测高精度。  相似文献   
50.
内蒙古中部重、磁场特征与地壳密度结构   总被引:2,自引:2,他引:2  
中亚造山带中的古生代——中生代花岗岩普遍具有正εNd值,在世界上是十分独特的。美国西部加利福尼亚中生代-新生代花岗岩同样具有正εNd值,并且其地壳的速度分布特征与内蒙古中部十分相似。本文通过与美国加利福尼亚的地球物理研究成果进行对比,来研究内蒙古中部的地壳密度结构,特别是下地壳的组成,试图探讨产生正£。值花岗岩的深部地质原因。研究结果表明,在大兴安岭-内蒙古造山带下地壳中可能存在与美国加里福尼亚类似的洋壳物质。此外,还对重、磁异常进行了处理,以确定蛇绿岩带的延展情况。由于在西拉木伦河附近存在切割至莫霍面的深断裂,结合地表出现的蛇绿岩带,故提出温都尔庙-西拉木伦河一线可能是内蒙古中部最重要的地质构造界线。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号