首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2003篇
  免费   299篇
  国内免费   560篇
测绘学   128篇
大气科学   363篇
地球物理   384篇
地质学   1150篇
海洋学   404篇
天文学   8篇
综合类   103篇
自然地理   322篇
  2024年   10篇
  2023年   31篇
  2022年   74篇
  2021年   78篇
  2020年   90篇
  2019年   105篇
  2018年   80篇
  2017年   98篇
  2016年   82篇
  2015年   75篇
  2014年   99篇
  2013年   135篇
  2012年   129篇
  2011年   100篇
  2010年   84篇
  2009年   123篇
  2008年   155篇
  2007年   139篇
  2006年   143篇
  2005年   112篇
  2004年   118篇
  2003年   96篇
  2002年   86篇
  2001年   71篇
  2000年   76篇
  1999年   54篇
  1998年   75篇
  1997年   60篇
  1996年   46篇
  1995年   37篇
  1994年   38篇
  1993年   39篇
  1992年   19篇
  1991年   28篇
  1990年   18篇
  1989年   16篇
  1988年   17篇
  1987年   15篇
  1986年   7篇
  1985年   3篇
  1978年   1篇
排序方式: 共有2862条查询结果,搜索用时 15 毫秒
51.
A swath bathymetric survey was conducted on Marsili Volcano, the biggest seamount in the Tyrrhenian Sea. It stands 3000 m above the surrounding oceanic crust of the 3500 m-deep Marsili back-arc basin and is axially located within the basin. The seamount has an elongated shape and presents distinctive morphology, with narrow (<1000 m) ridges, made up of several elongated cones, on the summit zone and extensive cone fields on its lower flanks. A dredging campaign carried out at water depths varying between 3400 and 600 m indicates that most of Marsili Seamount is composed of medium-K calc-alkaline basalts. Evolved high-K andesites were only recovered from the small cones on the summit axis zone. Petrological and geochemical characteristics of the least differentiated basalts reveal that at least two varieties of magmas have been erupted on the Marsili Volcano. Group 1 basalts have plagioclase and olivine as dominant phases and show lower Al, Ca, K, Ba, Rb and Sr, and higher Fe, Na, Ti and Zr with respect to a second type of basaltic magma. Group 2 basalts reveal the presence of clinopyroxene as an additional phenocryst phase. In addition, the two basaltic magmas have different original pre-eruptive H2O content (group 1, H2O-poor and group 2, H2O-rich). Moreover, comparison of the compositional trends and mineralogical compositions obtained from MELTS [Ghiorso, M.S., Sack, R.O., Contrib. Mineral. Petrol. 119 (1995) 197–212] fractional crystallization calculations reveal that the evolved andesites can only exclusively be derived from a low-pressure (0.3 kbar) fractionation of magmas compositionally similar to the least evolved group 2 basalts. Finally, we suggest that the high vesicularity of the basalts sampled at relatively great depths (>2400 m) on the edifice is governed by H2O and, probably, CO2 exsolution and is not a feature indicative of shallow water depth eruption.  相似文献   
52.
The Quaternary Eifel volcanic fields, situated on the Rhenish Massif in Germany, are the focus of a major interdisciplinary project. The aim is a detailed study of the crustal and mantle structure of the intraplate volcanic fields and their deep origin. Recent results from a teleseismic P-wave tomography study reveal a deep low-velocity structure which we infer to be a plume in the upper mantle underneath the volcanic area [J.R.R. Ritter et al., Earth Planet. Sci. Lett. 186 (2001) 7-14]. Here we present a travel-time investigation of 5038 teleseismic shear-wave arrivals in the same region. First, the transverse (T) and radial (R) component travel-time residuals are treated separately to identify possible effects of seismic anisotropy. A comparison of 2044 T- and 2994 R-component residuals demonstrates that anisotropy does not cause any first-order travel-time effects. The data sets reveal a deep-seated low-velocity anomaly beneath the volcanic region, causing a delay for teleseismic shear waves of about 3 s. Using 3773 combined R- and T-component residuals, an isotropic non-linear inversion is calculated. The tomographic images reveal a prominent S-wave velocity reduction in the upper mantle underneath the Eifel region. The anomaly extends down to at least 400 km depth. The velocity contrast to the surrounding mantle is depth-dependent (from −5% at 31-100 km depth to at least −1% at 400 km depth). At about 170-240 km depth the anomaly is nearly absent. The resolution of the data is sufficient to recover the described features, however the anomaly in the lower asthenosphere is underestimated due to smearing and damping. The main anomaly is similar to the P-wave model except the latter lacks the ‘hole’ near 200 km depth, and both are consistent with an upper mantle plume structure. For plausible anhydrous plume material in the uppermost 100 km of the mantle, an excess temperature as great as 200-300 K is estimated from the seismic anomaly. However, 1% partial melt reduces the required temperature anomaly to about 100 K. The temperature anomaly associated with the deeper part of the plume (250 to about 450 km depth) is at least 70 K. However, this estimate is quite uncertain, because the amplitude of the shear-wave anomaly may be larger than the modelled one. Another possibility is water in the upwelling material. The gap at 170-240 km depth could arise from an increase of the shear modulus caused by dehydration processes which would not affect P-wave velocities as much. An interaction of temperature and compositional variations, including melt and possibly water, makes it difficult to differentiate quantitatively between the causes of the deep-seated low-velocity anomaly.  相似文献   
53.
Ocean Drilling Program (ODP) Hole 504B near the Costa Rica Rift is the deepest hole drilled in the ocean crust, penetrating a volcanic section, a transition zone and a sheeted dike complex. The distribution of Li and its isotopes through this 1.8-km section of oceanic crust reflects the varying conditions of seawater alteration with depth. The upper volcanic rocks, altered at low temperatures, are enriched in Li (5.6-27.3 ppm) and have heavier isotopic compositions (δ7Li=6.6-20.8‰) relative to fresh mid-ocean ridge basalt (MORB) due to uptake of seawater Li into alteration clays. The Li content and isotopic compositions of the deeper volcanic rocks are similar to MORB, reflecting restricted seawater circulation in this section. The transition zone is a region of mixing of seawater with upwelling hydrothermal fluids and sulfide mineralization. Li enrichment in this zone is accompanied by relatively light isotopic compositions (−0.8-2.1‰) which signify influence of basalt-derived Li during mineralization and alteration. Li decreases with depth to 0.6 ppm in the sheeted dike complex as a result of increasing hydrothermal extraction in the high-temperature reaction zone. Rocks in the dike complex have variable isotopic values that range from −1.7 to 7.9‰, depending on the extent of hydrothermal recrystallization and off-axis low-temperature alteration. Hydrothermally altered rocks are isotopically light because 6Li is preferentially retained in greenschist and amphibolite facies minerals. The δ7Li values of the highly altered rocks of the dike complex are complementary to those of high-temperature mid-ocean ridge vent fluids and compatible to equilibrium control by the alteration mineral assemblage. The inventory of Li in basement rocks permits a reevaluation of the role of oceanic crust in the budget of Li in the ocean. On balance, the upper 1.8 km of oceanic crusts remains a sink for oceanic Li. The observations at 504B and an estimated flux from the underlying 0.5 km of gabbro suggest that the global hydrothermal flux is at most 8×109 mol/yr, compatible with geophysical thermal models. This work defines the distribution of Li and its isotopes in the upper ocean crust and provides a basis to interpret the contribution of subducted lithosphere to arc magmas and cycling of crustal material in the deep mantle.  相似文献   
54.
55.
大多数火山喷发以强酸 (主要是硫酸 )的形式在极地冰芯中留下痕迹 ,通过冰芯连续电导率 (ECM)或各个雪冰样品SO42 - 浓度测定能够恢复历史上的火山作用。极地冰芯中已知年代的火山喷发还可用于冰芯定年。极地冰芯记录的火山信号大小依赖于火山喷发的规模和类型 ,火山喷发的地理位置和酸性气体组成 ,大气气溶胶传输 ,以及沉降地点的年积累率和沉积后生过程等。单个火山喷发通常会导致数月至数年的半球乃至全球范围的气候相对变冷 (这种现象在极区变得更明显 ) ,但过去大规模的爆炸性火山喷发对气候的影响及其与气候变化之间的联系仍有待于进一步研究  相似文献   
56.
火山活动与金矿床   总被引:2,自引:2,他引:2       下载免费PDF全文
火山活动不仅对铁、铜多金属矿床的形成具有重要意义,而且对金矿形成也是至关重要的。笔者多年在火山岩分布区的工作的整理大量国内外大型超大型矿床矿田地质资料,深切地认识到火山作用在金矿形成过程中的重要意义。本文将从金矿床地质成因类型划分及其规模和资源量、各类型矿床的地质条件分析来说明这一认识,并初步总结了找矿工作中应注意的问题和标志,试图来推动火山岩地区金矿找矿工作。由于陆相火山岩金矿较为直观,因此本文着墨较少,而着重说明海底火山活动与金矿形成的内在联系。  相似文献   
57.
建立了HF—HN03密封酸溶以及Na2O2熔融处理样品,乙醇增强灵敏度,电感耦合等离子体质谱直接测定地质样品中微量和超痕量碲的方法。样品溶液中加入乙醇(φ=4%),在0.85L/min的载气流速下,碲信号可增强2.5倍以上。碲的方法检出限(100,DF=1000)为0.02μg/g。用土壤和水系沉积物国家一级标准物质验证了方法的准确度,标准物质的绝大多数分析结果与标准值的误差在允许范围内。分析了大洋多金属结核样品及深海沉积物样品中的微量碲,结果与其他方法相符,精密度试验RSD(n=3)<10%。  相似文献   
58.
A geochronological study of the Filicudi, Salina, Lipari and Vulcano Islands (Aeolian Archipelago) using the unspiked potassium–argon technique provides new age data which, combined with stratigraphic correlation, better constrain the temporal evolution of volcanism. The unspiked K–Ar age of the oldest exposed lavas on Filicudi, 219±5 ka, is significantly younger than the previous estimation of 1.02 Ma. In the general context of Aeolian volcanism, this new date suggests that the volcanism of the western sector of the Aeolian Archipelago is younger than previously thought. Geochronological data point out on the rapid transition from calc–alkaline to potassic volcanism. The distribution of the K–Ar ages within the Salina–Lipari–Vulcano group shows that the volcanism started on Lipari and propagated over time northward on Salina and southward on Vulcano. Geochronological and geophysical data suggest that the onset of volcanism in the central sector of the Aeolian Arc may be due to a mantle upwelling structure located below Lipari. A change in the style of the eruptions occurred in the Salina–Lipari–Vulcano system at about 100 ka from the present. Low-energy magmatic eruptions occurred between 188 and about 100 ka. From about 100 ka to the present, higher-energy eruptions and low-energy events due to magma–water interaction also occurred. This change in the style of activity, together with the appearance of evolved products (i.e. rhyolites) during the last 50 ka, is consistent with the formation of magmatic reservoirs located at shallower depth with respect to those of the 188–100-ka period. The new geochronological data and available petrological models reveal that a change in the deep source of the primary magmas occurred in a relatively short time interval.  相似文献   
59.
Heimaey is the southernmost and also the youngest of nine volcanic centres in the southward-propagating Eastern Volcanic Zone, Iceland. The island of Heimaey belongs to the Vestmannaeyjar volcanic system (850 km2) and is situated 10 km off the south coast of Iceland. Although Heimaey probably started to form during the Upper Pleistocene all the exposed subaerial volcanics (10 monogenetic vents covering an area of 13.4 km2) are of Holocene age. Heimaey is composed of roughly equal amounts of tuff/tuff-breccias and lavas as most eruptions involve both a phreatomagmatic and an effusive phase. The compositions of the extrusives are predominantly alkali basalts belonging to the sodic series. Repeated eruptions on Heimaey, and the occurrence of slightly more evolved rocks (i.e. hawaiite approaching mugearite), might indicate that the island is in an early stage of forming a central volcano in the Vestmannaeyjar system. This is further substantiated by the development of a magma chamber at 10–20 km depth during the most recent eruption in 1973 and by the fact that the average volume of material produced in a single eruption on Heimaey is 0.32 km3 (dense rock equivalent), which is twice the value reported for the Vestmannaeyjar system as a whole. We find no support for the previously postulated episodic behaviour of the volcanism in the Vestmannaeyjar system. However, the oldest units exposed above sea level, i.e. the Norðurklettar ridge, probably formed over a 500-year interval during the deglaciation of southern Iceland. The absence of equilibrium phenocryst assemblages in the Heimaey lavas suggests that magma rose quickly from depth, without long-time ponding in shallow-seated crustal magma chambers. Eruptions on Heimaey have occurred along two main lineaments (N45°E and N65°E), which indicate that it is seismic events associated with the southward propagation of the Eastern Volcanic Zone that open pathways for the magma to reach the surface. Continuing southward propagation of the Eastern Volcanic Zone suggests that the frequency of volcanic eruptions in the Vestmannaeyjar system might increase with time, and that Heimaey may develop into a central volcano like the mature volcanic centres situated on the Icelandic mainland.  相似文献   
60.
Abstract A controversial stratigraphic section, the Taneichi Formation, is exposed along the Pacific Coast of northeastern Honshu, the main island of the Japanese Archipelago. Although most sediments of the formation have long been dated as late Cretaceous, the northern section of it has been assigned to (i) the Upper Cretaceous; (ii) the Paleogene; or (iii) the Neogene. In the present report, we present the data of palynological and sedimentological studies, showing that the northern section should be assigned to the Neogene. A more important point in the present study is that we invoke some basic principles of fluvial sedimentology to resolve this stratigraphic subject. The lignite layers full of Paleogene–Miocene dinoflagellate cysts and pollen assemblages drape over the boulder‐sized (>40 cm in diameter) clasts in the northern section. However, the layers totally consist of aggregates of small lignite chips, indicating that the lignites are allochthonous materials. The mega‐clasts with derived microfossils in the lignites are thought to have been deposited as Neogene fluvial (flood) sediments in the newly formed Japanese Archipelago. Prior to the Miocene, the northern Honshu was part of the Eurasian Plate, thus the boulder‐sized clasts cannot be envisaged as long river flood deposits along the continental Paleogene Pacific Coast. Instead, the mega‐clasts with the draping lignites were probably derived from nearby Miocene highlands in the newly born island arc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号