首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   66篇
  国内免费   134篇
测绘学   24篇
大气科学   4篇
地球物理   35篇
地质学   452篇
海洋学   18篇
天文学   3篇
综合类   24篇
自然地理   76篇
  2023年   9篇
  2022年   19篇
  2021年   32篇
  2020年   24篇
  2019年   25篇
  2018年   21篇
  2017年   23篇
  2016年   15篇
  2015年   13篇
  2014年   28篇
  2013年   20篇
  2012年   29篇
  2011年   29篇
  2010年   16篇
  2009年   25篇
  2008年   21篇
  2007年   16篇
  2006年   29篇
  2005年   31篇
  2004年   25篇
  2003年   20篇
  2002年   30篇
  2001年   20篇
  2000年   27篇
  1999年   13篇
  1998年   17篇
  1997年   9篇
  1996年   15篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
排序方式: 共有636条查询结果,搜索用时 15 毫秒
11.
本文以加德满都市旧供水井修复项目为例,针对因滤水管缝隙被化学物质堵塞,导致井出水量逐年减少的旧供水井。通过井下电视摄像系统检查,采用六偏磷酸钠、氨基黄酸等有机酸,结合刷洗、高压喷射等机械方法进行处理,使旧供水井出水量得到明显提高。  相似文献   
12.
东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系   总被引:37,自引:0,他引:37  
东昆仑阿尼玛卿蛇绿岩带标志古特提斯洋关闭后的板块缝合带。在该缝合带及周围识别出4套与洋盆扩张和俯冲作用有关的火山岩,由南至北,分别为洋底玄武岩、岛弧火山岩、弧后盆地玄武岩和后碰撞火山岩。板块构造体系说明洋壳俯冲极性从南向北。已有年代学证据表明:阿尼玛卿洋盆的开启时代至少可以早到晚石炭世(308Ma),洋盆关闭可能在早三叠世;岛弧火山岩的时代为晚二叠世(260Ma);弧后盆地火山岩的时代为早中三叠世;后碰撞火山岩的时代为晚三叠世。三叠纪沿缝合带及其北部形成了一系列巨大的左旋走滑断裂系,包括东昆仑南缘左旋走滑断裂(200~220Ma)、阿尔金断裂的早期走滑剪切断裂系(220~230Ma)以及南祁连南缘巨型左旋走滑断裂(240~250Ma)。认为它们形成于阿尼玛卿古特提斯洋的关闭和斜向碰撞作用,但主要在俯冲板块折返阶段或逆冲岩片的抬升阶段,其时也是后碰撞岩浆活动和火山喷发阶段。  相似文献   
13.
西藏昌都地区夏通街滑坡是在古滑坡体上复活的新滑坡。自2001年以来滑坡变形破坏迹象日趋严重,引起了各方的关注。通过对滑坡的现场调查,了解其形成的地质背景。并对变形情况进行长期监测。在分析其变形特征的基础上,对古滑坡体的复活成因机理进行了分析研究。夏通街新滑坡是多种因素综合作用形成的。如河流冲刷、人类工程活动、降雨、地质条件等。其中起控制作用的主要因素是不合理的人类工程活动,特别是修建214国道对坡脚的开挖,使其抗滑段遭到破坏,抗滑力减小。另一控制因素则是连续3a的强降雨,使坡体岩土体力学性质降低,最终导致古滑坡体复活。根据对滑坡变形破坏情况的研究,提出相应的主动防治与被动防治相结合的治理对策。  相似文献   
14.
新一代天气雷达与强对流天气预警   总被引:44,自引:29,他引:44  
简要介绍了对流风暴的分类、对流风暴的强弱和强对流天气的多普勒天气雷达识别和预警技术,以及新一代天气雷达对强对流风暴预警水平的改进。  相似文献   
15.
苏皖地块--特提斯演化阶段独立的构造单元   总被引:31,自引:1,他引:31       下载免费PDF全文
基于苏皖地区的基底性质、晚元古代-中生代特征的沉积-火成建造、区域成矿和构造专属性,结合古地磁资料,提出了苏皖地块是特提斯演化阶段独立的构造单元的观点。它以苏鲁洋与华北克拉通间隔。震旦纪-早古生代的建造及变形特征与扬子克拉通有差异。石炭纪末和早二叠世的沉积和生物群表明它当时是古特提斯洋域里的一个中间地块,此时它已独立于扬子克拉通之外。三叠纪时苏鲁洋发生过大规模的消减但未闭合,因而苏皖地块的晚三叠世植物群与扬子克拉通有较明显区别。苏皖地块与华北克拉通(指胶辽地块)碰撞可能发生在早白垩世,该地区超高压变质岩的折返与之有关。之后,苏皖地块成为亚洲大陆雏形的一部分。  相似文献   
16.
The Precambrian massif of Ourika is crosscut by two systems of basic dykes, striking N40°E and N90–120°E. Using incompatible trace elements, the two systems form two distinct chemical groups, displaying a continental tholeiitic affinity. The composition variations between the two defined groups can be due to heterogeneities of mantle sources and to contamination, during the magma ascent, by the continental crust. The emplacement of these basic dykes, before the late-PIII formations, can be related to the Neoproterozoic distension generalised to the Anti-Atlas chain. To cite this article: A. Barakat et al., C. R. Geoscience 334 (2002) 827–833.  相似文献   
17.
河南省煤田地质局经济的持续快速发展,得益于不断推进科技进步。表现为着力巩固发展地勘优势,使核心技术得到不断升级和创新,形成强势竞争力。科技进步的核心问题是人。尊重人才的关键是改革用人机制,用事业留人,用待遇留人,用感情留人。  相似文献   
18.
The Zone of Samedan is part of a fossil, early Mesozoic rift system originally situated in the distal, Lower Austro-Alpine domain of the Adriatic passive continental margin. An early Mesozoic configuration of asymmetrical rift basins bounded by relative structural highs compartmentalized Late Cretaceous active margin tectonics; Jurassic half-grabens were folded into arcuate synclines, whereas relative structural highs engendered thin, imbricated thrust sheets. West-directed thrusting and folding initiated at the surface and continued to depths favoring mylonitization under lower greenschist-facies conditions. At this time Liguria-Piemontese ophiolites were accreted to Lower Austro-Alpine units directly underlying the Zone of Samedan. Late Cretaceous orogenic collapse of the Adriatic active margin involved the reactivation of west-directed thrusts as low-angle, top-to-the-east, normal faults. These faults accommodated extensional uplift of Liguria-Piemontese ophiolites and Lower Austro-Alpine units beneath and within the Zone of Samedan. During Paleogene collision, some Late Cretaceous faults in the Zone of Samedan were reactivated under lower anchizonal conditions as north-directed thrusts. The latter stages of this early Tertiary thickening were transitional to brittle, high-angle normal faulting associated with top-to-the-east extension and spreading above the warm, uplifting Lepontine dome.  相似文献   
19.
The 1500-m-thick marine strata of the Tethys Himalaya of the Zhepure Mountain (Tingri, Tibet) comprise the Upper Albian to Eocene and represent the sedimentary development of the passive northern continental margin of the Indian plate. Investigations of foraminifera have led to a detailed biozonation which is compared with the west Tethyan record. Five stratigraphic units can be distinguished: The Gamba group (Upper Albian - Lower Santonian) represents the development from a basin and slope to an outer-shelf environment. In the following Zhepure Shanbei formation (Lower Santonian - Middle Maastrichtian), outer-shelf deposits continue. Pebbles in the top layers point to beginning redeposition on a continental slope. Intensified redeposition continues within the Zhepure Shanpo formation (Middle Maastrichtian - Lower Paleocene). The series is capped by sandstones of the Jidula formation (Danian) deposited from a seaward prograding delta plain. The overall succession of these units represents a sea-level high at the Cenomanian/Turonian boundary followed, from the Turonian to Danian, by an overall shallowing-upward megasequence. This is followed by a final transgression — regression cycle during the Paleocene and Eocene, documented in the Zhepure Shan formation (?Upper Danian - Lutetian) and by Upper Eocene continental deposits. The section represents the narrowing and closure of the Tethys as a result of the convergence between northward-drifting India and Eurasia. The plate collision started in the Lower Maastrichtian and caused rapid changes in sedimentation patterns affected by tectonic subsidence and uplift. Stronger subsidence and deposition took place from the Middle Maastrichtian to the Lower Paleocene. The final closure of remnant Tethys in the Tingri area took place in the Lutetian.  相似文献   
20.
Three conflicting models are currently proposed for the location and tectonic setting of the Eurasian continental margin and adjacent Tethys ocean in the Balkan region during Mesozoic–Early Tertiary time. Model 1 places the Eurasian margin within the Rhodope zone relatively close to the Moesian platform. A Tethyan oceanic basin was located to the south bordering a large “Serbo-Pelagonian” microcontinent. Model 2 correlates an integral “Serbo-Pelagonian” continental unit with the Eurasian margin and locates the Tethys further southwest. Model 3 envisages the Pelagonian zone and the Serbo-Macedonian zone as conjugate continental units separated by a Tethyan ocean that was sutured in Early Tertiary time to create the Vardar zone of northern Greece and former Yugoslavia. These published alternatives are tested in this paper based on a study of the tectono-stratigraphy of a completely exposed transect located in the Voras Mountains of northernmost Greece. The outcrop extends across the Vardar zone, from the Pelagonian zone in the west to the Serbo-Macedonian zone in the east.Within the Voras Massif, six east-dipping imbricate thrust sheets are recognised. Of these, Units 1–4 correlate with the regional Pelagonian zone in the west (and related Almopias sub-zone). By contrast, Units 5–6 show a contrasting tectono-stratigraphy and correlate with the Paikon Massif and the Serbo-Macedonian zone to the east. These units form a stack of thrust sheets, with Unit 1 at the base and Unit 6 at the top. Unstacking these thrust sheets places ophiolitic units between the Pelagonian zone and the Serbo-Macedonian zone, as in Model 3. Additional implications are, first, that the Paikon Massif cannot be seen as a window of Pelagonian basement, as in Model 1, and, secondly, Jurassic andesitic volcanics of the Paikon Massif locally preserve a gneissose continental basement, ruling out a recently suggested origin as an intra-oceanic arc.We envisage that the Almopias (Vardar) ocean rifted in Triassic time, followed by seafloor spreading. The Almopias ocean was consumed beneath the Serbo-Macedonian margin in Jurassic time, generating subduction-related arc volcanism in the Paikon Massif and related units. Ophiolites were emplaced onto the Pelagonian margin in the west and covered by Late Jurassic (pre-Kimmeridgian) conglomerates. Other ophiolitic rocks formed within the Vardar zone (Ano Garefi ophiolite, Unit 4) in latest Jurassic–Early Cretaceous time and were not deformed until Early Tertiary time. The Vardar zone finally sutured in the Early Tertiary creating the present imbricate thrust structure of the Voras Mountains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号