首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4721篇
  免费   1995篇
  国内免费   218篇
测绘学   23篇
大气科学   4篇
地球物理   3709篇
地质学   2210篇
海洋学   287篇
天文学   329篇
综合类   4篇
自然地理   368篇
  2024年   3篇
  2023年   2篇
  2022年   1篇
  2021年   71篇
  2020年   85篇
  2019年   266篇
  2018年   465篇
  2017年   484篇
  2016年   515篇
  2015年   460篇
  2014年   467篇
  2013年   779篇
  2012年   453篇
  2011年   416篇
  2010年   346篇
  2009年   247篇
  2008年   325篇
  2007年   226篇
  2006年   227篇
  2005年   226篇
  2004年   188篇
  2003年   180篇
  2002年   148篇
  2001年   137篇
  2000年   146篇
  1999年   34篇
  1998年   7篇
  1997年   12篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   7篇
  1989年   1篇
排序方式: 共有6934条查询结果,搜索用时 15 毫秒
981.
982.
983.
984.
985.
986.
987.
Abstract: There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts. and the other in the front of Longmen Mts. The length of which is more than 270 km and about 80 km respectively. The co-seismic fault shows a reverse flexure belt with strike of N45°–60°E in the ground, which caused uplift at its northwest side and subsidence at the southeast. The fault face dips to the northwest with a dip angle ranging from 50° to 60°. The vertical offset of the co-seismic fault ranges 2.5–3.0 m along the Yingxiu-Beichuan co-seismic fault, and 1.5–1.1 m along the Doujiangyan-Hanwang fault. Movement of the co-seismic fault presents obvious segmented features along the active fault zone in central Longmen Mts. For instance, in the section from Yingxiu to Leigu town, thrust without evident slip occurred; while from Beichuan to Qingchuan, thrust and dextral strike-slip take place. Main movement along the front Longmen Mts. shows thrust without slip and segmented features. The area of earthquake intensity more than IX degree and the distribution of secondary geological hazards occurred along the hanging wall of co-seismic faults, and were consistent with the area of aftershock, and its width is less than 40km from co-seismic faults in the hanging wall. The secondary geological hazards, collapses, landslides, debris flows et al., concentrated in the hanging wall of co-seismic fault within 0–20 km from co-seismic fault.  相似文献   
988.
Abstract: Dextral-slip thrust movement of the Songpan-Garzê terrain over the Sichuan block caused the Ms 8.0 Wenchuan earthquake of May 12, 2008 and offset the Central Longmenshan Fault (CLF) along a distance of ~250 km. Displacement along the CLF changes from Yingxiu to Qingchuan. The total oblique slip of up to 7.6 m in Yingxiu near the epicenter of the earthquake, decreases northeastward to 5.3 m, 6.6 m, 4.4 m, 2.5 m and 1.1 m in Hongkou, Beichuan, Pingtong, Nanba and Qingchuan, respectively. This offset apparently occurred during a sequence of four reported seismic events, EQ1–EQ4, which were identified by seismic inversion of the source mechanism. These events occurred in rapid succession as the fault break propagated northeastward during the earthquake. Variations in the plunge of slickensides along the CLF appear to match these events. The Mw 7.5 EQ1 event occurred during the first 0–10 s along the Yingxiu-Hongkou section of the CLF and is characterized by 1.7 m vertical slip and vertical slickensides. The Mw 8.0 EQ2 event, which occurred during the next 10–42 s along the Yingxiu-Yanziyan section of the CLF, is marked by major dextral-slip with minor thrust and slickensides plunging 25°–35° southwestward. The Mw 7.5 EQ3 event occurred during the following 42–60 s and resulted in dextral-slip and slickensides plunging 10° southwestward in Beichuan and plunging 73° southwestward in Hongkou. The Mw 7.7 EQ4 event, which occurred during the final 60–95 s along the Beichuan-Qingchuan section of the CLF, is characterized by nearly equal values of dextral and vertical slips with slickensides plunging 45°–50° southwestward. These seismic events match and evidently controlled the concentrations of landslide dams caused by the Wenchuan earthquake in Longmenshan Mountains.  相似文献   
989.
Fold terminations are key features in the study of compressional fault-related folds. Such terminations could be due to loss of displacement on the thrust fault or/and forming a lateral or oblique ramp. Thus, high-quality seismic data would help unambiguously define which mechanism should be responsible for the termination of a given fault-related fold. The Qiongxi and Qiongxinan structures in the Sichuan Basin, China are examples of natural fault-propagation folds that possess a northern termination and a structural saddle between them. The folds/fault geometry and along-strike displacement variations are constrained by the industry 3-D seismic volume. We interpret that the plunge of the fold near the northern termination and the structural saddle are due to the loss of displacement along strike. The fault geometry associated with the northern termination changes from a flat-ramp at the crest of the Qiongxinan structure, where displacement is the greatest, to simply a ramp near the northern tip of the Qiongxi structure, without forming a lateral or oblique ramp. In this study, we also use the drainage pattern, embryonic structure preserved in the crest of the Qiongxinan structure and the assumption that displacement along a fault is proportional to the duration of thrusting to propose a model for the lateral propagation of the Qiongxinan and Qiongxi structures. Specifically, we suggest that the structure first initiated as an isolated fault ramp within brittle units. With increased shortening, the fault grows to link with lower detachments in weaker shale units to create a hybridized fault-propagation fold. Our model suggests a possible explanation for the lateral propagation history of the Qiongxinan and Qiongxi structures, and also provides an alternative approach to confirming the activity of the previous Pingluoba structure in the southwestern Sichuan Basin in the late Cenozoic.  相似文献   
990.
Photometric and spectroscopic characteristics of the WN5+O6 binary system, V444 Cyg, were studied. The Wilson‐Devinney (WD) analysis, using new BV observations carried out at the Ankara University Observatory, revealed the masses, radii, and temperatures of the components of the system as MWR = 10.64 M, MO = 24.68 M, RWR = 7.19 R, RO = 6.85 R, TWR = 31 000 K, and TO = 40000 K, respectively. It was found that both components had a full spherical geometry, whereas the circumstellar envelope of the WR component had an asymmetric structure. The OC analysis of the system revealed a period lengthening of 0.139 ± 0.018 syr–1, implying a mass loss rate of (6.76 ± 0.39) ×10–6 M yr–1 for the WR component. Moreover, 106 IUE‐NEWSIPS spectra were obtained from NASA's IUE archive for line identification and determination of line profile variability with phase, wind velocities and variability in continuum fluxes. The integrated continuum flux level (between 1200–2000 Å) showed a mild and regular increase from orbital phase 0.00 up to 0.50 and then a decrease in the same way back to phase 0.00. This is evaluated as the O component making a constant and regular contribution to the system's UV light as the dominant source. The C IV line, originating in the circumstellar envelope, had the highest velocity while N IV line, originating in deeper layers of the envelope, had the lowest velocity. The average radial velocity calculated by using the C IV line (wind velocity) was found as 2326 km s–1 (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号