首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   26篇
  国内免费   24篇
大气科学   3篇
地球物理   94篇
地质学   139篇
海洋学   19篇
天文学   6篇
综合类   3篇
自然地理   52篇
  2023年   3篇
  2022年   1篇
  2021年   5篇
  2020年   11篇
  2019年   4篇
  2018年   6篇
  2017年   1篇
  2016年   11篇
  2015年   7篇
  2014年   9篇
  2013年   13篇
  2012年   10篇
  2011年   8篇
  2010年   5篇
  2009年   15篇
  2008年   19篇
  2007年   17篇
  2006年   27篇
  2005年   17篇
  2004年   13篇
  2003年   17篇
  2002年   12篇
  2001年   13篇
  2000年   11篇
  1999年   13篇
  1998年   4篇
  1997年   6篇
  1996年   6篇
  1995年   10篇
  1994年   3篇
  1993年   3篇
  1992年   6篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有316条查询结果,搜索用时 15 毫秒
101.
在严格厌氧条件下,分别用滚管计数法和MPN计数法测定了不同环境泥炭样品中的发酵型细菌,硫酸盐还原细菌和厌氧纤维素分解细菌的数量与分布,并考察了产甲烷细菌的存在与活性,同时分析了这四种细菌类群相应的地质意义。实验结果表明,在泥炭中发酵型细菌数量与有机质的含量特别是腐殖酸含量具有正相关性;硫酸盐还原细菌数量与硫酸盐含量之间的关系并不明显,与样品埋藏深度具有一定负相关性,硫酸盐还原细菌数量与硫酸盐含量的最小值均出现在泥炭层最底层;厌氧纤维素分解菌只在少数样品中检测到,而产甲烷细菌广泛存在于所有样品中,且可以与硫酸盐还原细菌共存于许多样品中。  相似文献   
102.
Reclamation of peat bogs for agriculture changes the physical and chemical characteristics of the peat matrix, for example, drainage and tillage accelerate decomposition, altering peat porosity, pore size distribution, and hydraulic properties. This study investigated changes in near-saturated hydraulic conductivity over time after drainage of peat soil for agricultural use by conducting tension infiltrometer measurements in a mire that has been gradually drained and reclaimed for agriculture during the past 80 years (with fields drained 2, 12, 40, and 80 years before the measurements). At pore water pressure closest to saturation (pressure head −1 cm), hydraulic conductivity in the newest field was approximately nine times larger than that in the oldest field, and a decreasing trend with field age was observed. A similar (but weaker) trend was observed with −3 cm pressure head (approximately four times larger in the newest field in comparison to the oldest), but at −6 cm head, there were no significant differences. These results indicate that peat degradation reduces the amount of millimetre-sized pores in particular. They also indicate that changes in peat macroporosity continue for several decades before a new steady state is reached.  相似文献   
103.
Forested boreal peatlands represent a precipitation‐dependent ecosystem that is prone to wildfire disturbance. Solar radiation exchange in forested peatlands is modified by the growth of a heterogeneous, open‐crown tree canopy, as well as by likely disturbance from wildfire. Radiation exchange at the peat surface is important in peatlands, as evaporation from the peat surface is the dominant pathway of water loss in peatlands of continental western North America. We examined shortwave and longwave radiation exchange in two forested ombrotrophic peatlands of central Alberta, Canada: one with (>75 years since wildfire; unburned) and another without a living spruce canopy (1–4 years since wildfire; burned) between the autumn of 2007 and 2010. Above‐canopy winter albedo was nearly two times greater in the recently burned peatland than the unburned peatland. Incoming shortwave radiation at the peat surface was much higher at the burned peatland, which increases the amount of energy available for evaporation. This is especially true for hollow microforms that are generally shaded by the tree canopy in unburned peatlands. Snow‐free albedo was similar between peatlands, although an increase in longwave losses at the burned site resulted in slightly greater net radiation at the unburned site. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
104.
Our understanding of hydraulic properties of peat soils is limited compared with that of mineral substrates. In this study, we aimed to deduce possible alterations of hydraulic properties of peat soils following degradation resulting from peat drainage and aeration. A data set of peat hydraulic properties (188 soil water retention curves [SWRCs], 71 unsaturated hydraulic conductivity curves [UHCs], and 256 saturated hydraulic conductivity [Ks] values) was assembled from the literature; the obtained data originated from peat samples with an organic matter (OM) content ranging from 23 to 97 wt% (weight percent; and according variation in bulk density) representing various degrees of peat degradation. The Mualem‐van Genuchten model was employed to describe the SWRCs and UHCs. The results show that the hydraulic parameters of peat soils vary over a wide range confirming the pronounced diversity of peat. Peat decomposition significantly modifies all hydraulic parameters. A bulk density of approximately 0.2 g cm?3 was identified as a critical threshold point; above and below this value, macroporosity and hydraulic parameters follow different functions with bulk density. Pedotransfer functions based on physical peat properties (e.g., bulk density and soil depth) separately computed for bog and fen peat have significantly lower mean square errors than functions obtained from the complete data set, which indicates that not only the status of peat decomposition but also the peat‐forming plants have a large effect on hydraulic properties. The SWRCs of samples with a bulk density of less than 0.2 g cm?3 could be grouped into two to five classes for each peat type (botanical composition). The remaining SWRCs originating from samples with a bulk density of larger than 0.2 g cm?3 could be classified into one group. The Mualem‐van Genuchten parameter values of α can be used to estimate Ks if no Ks data are available. In conclusion, the derived pedotransfer functions provide a solid instrument to derive hydraulic parameter values from easily measurable quantities; however, additional research is required to reduce uncertainty.  相似文献   
105.
Peatlands are globally important long-term sinks of carbon, however there is concern that enhanced peat decomposition and moss moisture stress due to climate change mediated drought will reduce moss productivity making these ecosystems vulnerable to carbon loss and associated long-term degradation. Peatlands are resilient to summer drought moss stress because of negative ecohydrological feedbacks that generally maintain a wet peat surface, but where feedbacks may be contingent on peat depth. We tested this ‘survival of the deepest’ hypothesis by examining water table (WT) position, near-surface moisture content, and soil water tension in peatlands that differ in size, peat depth, and catchment area during a summer drought. All shallow sites (<40 cm depth) lost their WT (i.e., the groundwater well was dry) for considerable time during the drought period. Near-surface soil water tension increased dramatically at shallow sites following WT loss, increasing ~5–7.5× greater at shallow sites compared to deep sites (≥40 cm depth). During a mid-summer drought intensive field survey, we found that 60–67% of plots at shallow sites exceeded a 100 mb tension threshold used to infer moss water stress. Unlike the shallow sites, tension typically did not exceed this 100 mb threshold at the deep sites. Using species dependent water content – chlorophyll fluorescence thresholds and relations between volumetric water content and WT depth, Monte Carlo simulations suggest that moss had nearly twice the likelihood of being stressed at shallow sites (0.38 ± 0.24) compared to deep sites (0.22 ± 0.18). This study provides evidence that mosses in shallow peatland may be particularly vulnerable to warmer and drier climates in the future, but where species composition may play an important role. We argue that a critical ‘threshold’ peat depth specific for different hydrogeological and hydroclimatic regions can be used to assess what peatlands are especially vulnerable to climate change mediated drought.  相似文献   
106.
以14C测年为基础,构建了天湖山泥炭剖面的年代序列,通过对研究区泥炭腐殖化度与有机质的分析研究,发现两者呈现出很好的相关性,共同记录了研究区约9.5kaBP以来的气候变化,可划分出3个主要阶段:1)早期(9.5 ka BP-6.3 ka BP)泥炭腐殖化度最低,指示气候湿热,其中7.9ka BP-6.3kaBP为整个剖面腐殖化度最低值阶段,可能为研究区全新世气候最适宜期(全新世大暖期)阶段;2)中期(6.3 ka BP~2.8 ka BP)泥炭腐殖化度较低,指示气候温凉湿润;3)晚期(2.8 ka BP以来),泥炭腐殖化度偏高,波动较大,指示气候温凉偏于.利用redfit红色噪声谱分析发现,有机质含量变化时间序列中存在948a、268a、342a的准周期,反映了中低纬度亚热带季风区气候变化对太阳活动的响应.  相似文献   
107.
Detailed palynological analyses, including pollen preservation and charcoal counts, and sedimentological analyses (loss-on-ignition, percentage dry weight, dry bulk density and humification), supported by 15 14C dates, were applied to a small upland (350 m OD) peat basin near Pitlochry, east-central Grampians, Scotland. Stratigraphical analyses and radiocarbon dating were also undertaken on the valley peat surrounding the basin. Organic sediment began to accumulate in the basin and on the valley floor at ca. 9800 yr BP. ‘Recurrence surfaces’ within the valley floor peat correlate with the end of a trend to increased aridity in the deep basin, from 8900 to 8500 yr BP. Pine may have colonised the hills, with birch, before the migration of hazel at 9150 yr BP. From around 8000 yr BP elm grew on the base-rich soils. Alder may have been present by 7000 yr BP but it did not expand until immediately after the first major anthropogenic disturbance, at 4800 yr BP. Above 8000 yr BP silt was commonly deposited in the basin by streams, but several phases of exceptionally intense inwashing are identified, and at least two of these correlate with periods of increased precipitation. Grazing pressure during the elm decline marks the beginning of a long history of generally low intensity pastoralism, interspersed with periods of heightened anthropogenic activity.  相似文献   
108.
109.
Anisotropy and heterogeneity of hydraulic conductivity (K) are seldom considered in models of mire hydrology. We investigated the effect of anisotropy and heterogeneity on groundwater flow in bog peat using a steady‐state groundwater model. In five model simulations, four sets of K data were used. The first set comprised measured K values from an anisotropic and heterogeneous bog peat. These data were aggregated to produce the following simplified data sets: an isotropic and heterogeneous distribution of K; an isotropic and homogeneous distribution; and an anisotropic and homogeneous distribution. We demonstrate that, where anisotropy and heterogeneity exist, groundwater flow in bog peat is complex. Fine‐scale variations in K have the potential to influence patterns and rates of groundwater flow. However, for our data at least, it is heterogeneity and not anisotropy that has the greater influence on producing complex patterns of groundwater flow. We also demonstrate that patterns and rates of groundwater flow are simplified and reduced when measured K values are aggregated to create a more uniform distribution of K. For example, when measured K values are aggregated to produce isotropy and homogeneity, the rate of modelled seepage is reduced by 28%. We also show that when measured K values are used, the presence of a drainage ditch can increase seepage through a modelled cross‐section. Our work has implications for the accurate interpretation of hydraulic head data obtained from peat soils, and also the understanding of the effect of drainage ditches on patterns and rates of groundwater flow. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号