首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   19篇
  国内免费   36篇
地球物理   11篇
地质学   161篇
海洋学   1篇
综合类   2篇
自然地理   10篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   9篇
  2019年   6篇
  2018年   7篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   6篇
  2013年   16篇
  2012年   8篇
  2011年   2篇
  2010年   5篇
  2009年   14篇
  2008年   6篇
  2007年   13篇
  2006年   6篇
  2005年   6篇
  2004年   6篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   7篇
  1998年   2篇
  1997年   7篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   5篇
  1979年   1篇
  1977年   1篇
排序方式: 共有185条查询结果,搜索用时 30 毫秒
41.
Two samples from the upper and lower horizons of the Irati oil shale of the Paraná Basin, Brazil were sampled in a single borehole, and analysed using organic petrography and geochemistry. The results are interpreted in terms of the kerogen type, maturity and depositional environment of the two horizons.Organic petrography shows the oil-shales to be composed of a mineral groundmass, mainly clay minerals, carbonate and pyrite, associated, and sometimes impregnated, with fluorescing organic material and disseminated phytoclasts. Humic material is fairly rare and mostly present as very small particles. The liptinitic particles are mostly alginite (A and B), sporinite and more rarely resinite. Reflectance measurements (upper seam = 0.34% R0; lower seam = 0.40% R0) indicate an equivalent rank of lignite/sub-bituminous coal (ASTM), i.e. immature with respect to oil and gas generation. Different organic geochemical methods (Rock-Eval pyrolysis, solvent extraction, GC and GC-MS) demonstrate both samples to be immature, rich oil-shales (100–114 kg/ton) containing Type I kerogen, of a dominantly bacterially-degraded algal origin deposited in a lacustrine environment. The presence of Botryococcus suggests deposition under fresh/brackish water conditions.A tentative interpretation of the extract and vitrinite reflectance data suggests a maximum paleo-burial of between 1.3 and 2.8 km for the analysed section of the Irati Formation.  相似文献   
42.
The formation of large martite-microplaty hematite ore deposits in northwest Australia remains a contentious topic in part because important evidence supporting a unifying genetic model has not been observed at all deposits. Carbonate replacement of silica has been found along normal faults below ore at the Mount Tom Price and Giles Mini deposits, which suggests an early hypogene process during ore formation. However, such rocks have not been identified at the largest martite-microplaty hematite deposit, Mount Whaleback. In this study, samples of the Mount McRae Shale are examined for their chemistry, mineralogy and petrography. These samples were collected from several key locations, including an area that immediately underlies ore along the Mount Whaleback fault at Mount Whaleback. Compared to unaltered black Mount McRae Shale from Wittenoom Gorge in the north and altered black and red Mount McRae Shale at Mount Whaleback, reddish-green Mount McRae Shale along the Mount Whaleback fault is greatly enriched in MgO and CaO and depleted in SiO2. This chemistry arises from significant amounts of fine- to medium-grained ferroan-dolomite and ankerite and cross-cutting chlorite and carbonate veins. The composition is distinct from that produced during regional metamorphism, and most likely represents hydrothermal alteration after metamorphism. The lack of carbonate-rich, silica-poor rocks in the overlying Dales Gorge Member at Mount Whaleback is consistent with pervasive oxidation of most rocks in the region during or after ore genesis, a process that removed carbonates. Although several questions remain unanswered, these results support models that invoke an early hypogene stage during the formation of the martite-microplaty hematite deposits in the Hamersley Province.Editorial Handling: B. Lehmann  相似文献   
43.
The Eocene La Meseta Formation is the youngest exposed unit of the back-arc James Ross Basin, Antarctic Peninsula, cropping out in Seymour (Marambio) Island. The formation comprises 720 m of clastic sedimentary rocks of deltaic, estuarine and shallow marine origin. It was subdivided into six unconformity-based units (Valle de Las Focas, Acantilados, Campamento, Cucullaea I, Cucullaea II and Submeseta Allomembers) grouped into three main facies associations. Facies association I represents valley-confined deposition in a progradational/aggradational tide-dominated and wave-influenced delta front/delta plain environment. Facies association II includes tidal channels, mixed tidal flats, tidal inlets and deltas, washover and beach environments. Facies association III represents nonconfined tide- and storm-influenced nearshore environments. La Meseta Formation sandstones are quartzofeldspathic with some hybrid arenites (glauconite and carbonate bioclasts-rich). Sandstone detrital modes are subdivided into two distinctive petrofacies: the low quartz petrofacies (petrofacies I, Q<55% and L>12%), interpreted to retain the original provenance signal, and the high quartz petrofacies (petrofacies II, Q>55% and L<12%), representing the reworking product of the former after selective elimination of the more labile components. Petrofacies I sandstone framework grains were mainly derived from a dissected magmatic arc and an associated metamorphic belt. Textural evidence for recycling of some grains (e.g. garnet) from older sedimentary units during valley incision is not conclusive. Changes in the relative participation of source areas during the evolution of the incised-valley system are evaluated from the relative proportions of lithic fragments and monomineralic clasts derived from each rock type. Two lithic assemblages were recognized. The mixed lithic assemblage (Rv/Rm+Rp<1.4) shows participation of all rock types; it represented valley-confined environments, either during the initial stage of valley development, or after main episodes of incision. The volcanic lithic assemblage (Rv/Rm+Rp>1.4) is clearly dominated by volcanic-derived clasts; it developed at times of high sea level and/or during later stages of the valley fill, when an “energy fence” at the shoreline prevented delivery of sediment from the Antarctic Peninsula, thus enhancing the relative participation of local volcanic sources.  相似文献   
44.
双江口地区出露的花岗岩主要为二云二长花岗岩和似斑状黑云花岗岩,二者呈侵入接触关系,在岩体特征、岩石颜色、结构、矿物组成及后期改造等方面存在较为明显的差异。岩相学特征表明二云二长花岗岩形成晚于似斑状花岗岩,岩石地球化学特征表明二者成因为部分熔融,物源为壳源,形成环境为同碰撞-造山带环境,形成时间为印支晚期。  相似文献   
45.
The upper Palaeocene–lower Eocene Umm er Radhuma Formation in the subsurface of Qatar is dominated by subtidal carbonate depositional packages overlain by bedded evaporites. In Saudi Arabia and Kuwait, peritidal carbonate depositional sequences with intercalated evaporites and carbonates in Umm er Radhuma have been previously interpreted to have been dolomitized via downward reflux of hypersaline brines. Here, textural, mineralogical and geochemical data from three research cores in Qatar are presented which, in contrast, are more consistent with dolomitization by near-normal marine fluids. Petrographic relationships support a paragenetic sequence whereby dolomitization occurred prior to the formation of all other diagenetic mineral phases, including chert, pyrite, palygorskite, gypsum, calcite and chalcedony, which suggests that dolomitization occurred very early. The dolomites occur as finely crystalline mimetic dolomites, relatively coarse planar-e dolomites, and coarser nonplanar dolomites, all of which are near-stoichiometric (50.3 mol% MgCO3) and well-ordered (0.73). The dolomite stable isotope values (range −2.5‰ to +1‰; mean δ18O = −0.52‰) and trace element concentrations (Sr = 40 to 150 ppm and Na = 100 to 600 ppm) are compatible with dolomitization by near-normal seawater or mesohaline fluids. Comparisons between δ18O values from Umm er Radhuma dolomite and the overlying Rus Formation gypsum further suggest that dolomitization did not occur in fluids related to Rus evaporites. This study provides an example of early dolomitization of evaporite-related carbonates by near-normal seawater rather than by refluxing hypersaline brines from overlying bedded evaporites. Further, it adds to recent work suggesting that dolomitization by near-normal marine fluids in evaporite-associated settings may be more widespread than previously recognized.  相似文献   
46.
A general shift towards higher mineralogical and textural maturity changes the reservoir character across the Triassic–Jurassic transition in the southwestern Barents Sea basin (SWBSB), largely affecting the hydrocarbon prospectivity in the region. Petrographic and geochronological provenance data presented in this paper suggest that the shift from mineralogically immature to mature sandstones initiated during the deposition of the Norian–Rhaetian Fruholmen Formation, and varies with basin location. Strong contrasts between the Fruholmen Formation and underlying formations are associated with proximity to the rejuvenated Caledonian and Fennoscandian hinterlands and are mainly restricted to the southern basin margins. In the basin interior, subtle petrographic variations between the Fruholmen Formation and older Triassic sandstones reflect a distal position relative to the southern hinterland. The long-lived misconception of a regional compositional contrast in the Arctic at the turn of the Norian can be attributed to higher sampling frequency associated with hydrocarbon exploration activity along the southern basin margins, and masking by increased annual precipitation and subsequent reworking during the Jurassic. Geothermal signatures and rearrangement of ferric clay material across the Carnian–Norian transition support a recycled origin for the Fruholmen Formation in the basin interior. As the closest tectonically active region at the time, the Novaya Zemlya fold-and-thrust belt represents the best provenance candidate for polycyclic components in Norian–Rhaetian strata. In addition to recycling in the hinterland during the Late Triassic, local erosion of exposed intrabasinal highs and platforms at the Triassic–Jurassic transition represents a second process where thermodynamically unstable mineral components originally sourced from the Uralides may be removed. Textural and mineralogical modification may also have occurred in marginal-marine depositional environments during periods with elevated sea level. Mature sediment supply from the rejuvenated hinterland in the south, multiple cycles of reworking and gradual accumulation of polycyclic grains have likely led to the extreme compositional maturity registered in the Tubåen, Nordmela and Stø formations in the SWBSB. It is likely that increased annual precipitation since the latest Carnian had an amplifying effect on sandstone maturation across the Triassic–Jurassic boundary, but we consider the effect to be inferior compared to provenance shifts and reworking. Findings from this study are important for understanding compositional and textural maturity enhancement processes in siliciclastic sedimentary basins.  相似文献   
47.
对石油包裹体研究和应用的几点认识   总被引:5,自引:0,他引:5  
本文总结了对石油包裹体研究和应用的几点认识,包括流体包裹体岩相分析、显微温度分析、油包裹体丰度统计和原始样品采集及制备。强调流体包裹体岩相分析是直观而有效的分析技术,其结果可以提供油气是否运移、运移期次、相对早晚及每一期相对数量和油气大致特征等资料,也是其他有关包裹体研究的基础。显微温度测试必须以油气包裹体鉴定为基础,单纯应用均一温度划分油气运移期次是不合适的。油包裹体丰度是确定古油藏的重要参数,统计结果受多种因素影响。石油包裹体分析是研究性较强的方法,研究人员参与到分析鉴定工作中方能取得较好的研究成果。  相似文献   
48.
49.
A small body of mafic texturally and compositionally varied igneous intrusive rocks corresponding to redwitzites occurs at Abertamy in the Western pluton of the Krušné hory/Erzgebirge granite batholith (Czech Republic). It is enclosed by porphyritic biotite granite of the older intrusive suite in the southern contact zone of the Nejdek-Eibenstock granite massif. We examined the petrology and geochemistry of the rocks and compared the data with those on redwitzites described from NE Bavaria and Western Bohemia.The redwitzites from Abertamy are coarse- to medium-grained rocks with massive textures and abundant up to 2 cm large randomly oriented biotite phenocrysts overgrowing the groundmass. They are high in MgO, Cr and Ni but have lower Rb and Li contents than the redwitzites in NE Bavaria. Compositional linear trends from redwitzites to granites at Abertamy indicate crystal fractionation and magma mixing in a magma chamber as possible mechanisms of magma differentiation. Plots of MgO versus SiO2, TiO2, Al2O3, FeO, CaO, Na2O, and K2O indicate mainly plagioclase and orthopyroxene fractionation as viable mechanisms for in situ differentiation of the redwitzites.The porphyritic biotite monzogranite enclosing the redwitzite is the typical member of the early granitic suite (Older Intrusive Complex, OIC ) with strongly developed transitional I/S-type features. The ages of zircons obtained by the single zircon Pb-evaporation method suggest that the redwitzites and granites at Abertamy originated during the same magmatic period of the Variscan plutonism at about 322 Ma.The granitic melts have been so far mainly interpreted to be formed by heat supply from a thickened crust or decompression melting accompanying exhumation and uplift of overthickened crust in the Krušné hory/Erzgebirge due to a previous collisional event at ca. 340 Ma. The presence of mafic bodies in the Western pluton of the Krušné hory/Erzgebirge batholith confirms a more significant role of mantle-derived mafic magmas in heating of the sources of granitic melts than previously considered.  相似文献   
50.
The Late Permian succession of the Upper Indus Basin in northeastern Pakistan is represented by the carbonate-dominated Zaluch Group, which consists of the Amb, Wargal and Chhidru formations, which accumulated on the southwestern shelf of the Paleo-Tethys Ocean, north of the hydrocarbon-producing Permian strata of the Arabian Peninsula. The reservoir properties of the mixed clastic-carbonate Chhidru Formation (CFm) are evaluated based on petrography, using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD) techniques. The diagenetic features are recognized, ranging from marine (isopachous fibrous calcite, micrite), through meteoric (blocky calcite-I, neomorphism and dissolution) to burial (poikilotopic cement, blocky calcite-II-III, fractures, fracture-filling, and stylolites). Major porosity types include fracture and moldic, while inter- and intra-particle porosities also exist. Observed visual porosity ranges from 1.5%–7.14% with an average of 5.15%. The sandstone facies (CMF-4) has the highest average porosity of 10.7%, whereas the siliciclastic grainstone microfacies (CMF-3) shows an average porosity of 5.3%. The siliciclastic mudstone microfacies (CMF-1) and siliciclastic wacke-packestone microfacies (CMF-2) show the lowest porosities of 4.8% and 5.0%, respectively. Diagenetic processes like cementation, neomorphism, stylolitization and compaction have reduced the primary porosities; however, processes of dissolution and fracturing have produced secondary porosity. On average, the CFm in the Nammal Gorge, Salt Range shows promise and at Gula Khel Gorge, Trans-Indus, the lowest porosity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号