首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2735篇
  免费   393篇
  国内免费   599篇
测绘学   67篇
大气科学   6篇
地球物理   633篇
地质学   2206篇
海洋学   260篇
天文学   30篇
综合类   119篇
自然地理   406篇
  2024年   7篇
  2023年   25篇
  2022年   67篇
  2021年   72篇
  2020年   79篇
  2019年   115篇
  2018年   83篇
  2017年   76篇
  2016年   93篇
  2015年   100篇
  2014年   126篇
  2013年   211篇
  2012年   146篇
  2011年   102篇
  2010年   89篇
  2009年   137篇
  2008年   171篇
  2007年   166篇
  2006年   182篇
  2005年   140篇
  2004年   189篇
  2003年   151篇
  2002年   140篇
  2001年   101篇
  2000年   114篇
  1999年   100篇
  1998年   102篇
  1997年   108篇
  1996年   91篇
  1995年   91篇
  1994年   79篇
  1993年   58篇
  1992年   45篇
  1991年   32篇
  1990年   31篇
  1989年   31篇
  1988年   17篇
  1987年   18篇
  1986年   11篇
  1985年   9篇
  1984年   3篇
  1983年   3篇
  1981年   3篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1973年   1篇
  1954年   1篇
排序方式: 共有3727条查询结果,搜索用时 15 毫秒
161.
针对地震活动相关性分析的实际需要,提出了一种定量分析不同区域地震活动相关性的方法。以此研究了印度板块东、西触角强震对青藏块体地震活动的影响,结果表明阿萨姆地区的强震活动与青藏块体的强震活动具有很高的相关性,而帕米尔地区的强震影响较小。通过与R值评分及基于板块动力作用分析结果的比较,证实了本方法的有效性。  相似文献   
162.
INTRODUCTIONHowtocombinethestudyofseismogenictectonicswithearthquakepredictionisanurgentscientificdifficulty .Thereexistbiggapsbetweenstudymethodsandcurrentknowledgeonseismogenitectonics ,earthquakeprediction ,seismogenesisandthephysicsofearthquakeoccurre…  相似文献   
163.
Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision,especially its four-dimensional temporal-spatial evolution, is a subject that geological communities have long been concerned about and studied. Continent-continent collision is mainly manifested by strong underthrnsting (subduction) of the underlying block along an intracontinental subduction zone and continuous obduction (thrusting propagation) of the overlying block along the intracontinental subduction zone, the occurrence of a basin-range tectonic framework in a direction perpendicular to the subduction zone and the flexure and disruption of the Moho. On the basis of numerical modeling, the authors discuss in detail the couplings between various amounts and rates of displacement caused by basin subsidence, mountain uplift and Moho updoming and downflexure during obduction (thrusting propagation) and subduction and the migration pattern of basin centers. They are probably indications or criteria for judgment or determination of continent-continent collision.  相似文献   
164.
165.
166.
Active tectonics in a basin plays an important role in controlling a fluvial system through the change in channel slope. The Baghmati, an anabranching, foothills-fed river system, draining the plains of north Bihar in eastern India has responded to ongoing tectonic deformation in the basin. The relatively flat alluvial plains are traversed by several active subsurface faults, which divide the area in four tectonic blocks. Each tectonic block is characterized by association of fluvial anomalies viz. compressed meanders, knick point in longitudinal profiles, channel incision, anomalous sinuosity variations, sudden change in river flow direction, river flow against the local gradient and distribution of overbank flooding, lakes, and waterlogged area. Such fluvial anomalies have been identified on the repetitive satellite images and maps and interpreted through DEM and field observations to understand the nature of vertical movements in the area. The sub-surface faults in the Baghmati plains cut across the river channel and also run parallel which have allowed us to observe the effects of longitudinal and lateral tilting manifested in avulsions and morphological changes.  相似文献   
167.
168.
The study area is located in the south-eastern part of the Crati valley (Northern Calabria, Italy), which is a graben bordered by N–S trending normal faults and crossed by NW–SE normal left-lateral faults. Numerous severe crustal earthquakes have affected the area in historical time. Present-day seismic activity is mainly related to the N–S faults located along the eastern border of the graben. In this area, much seismically induced deep-seated deformation has also been recognised.In the present paper, radon concentrations in soil gas have been measured and compared with (a) lithology, (b) Quaternary faults, (c) historical and instrumental seismicity, and (d) deep-seated deformation.The results highlight the following:
(a) There is no evidence of a strong correlation between lithology and the radon anomalies.
(b) A clear correlation between the N–S geometry of radon anomalies and the orientation of main fault systems has been recognised, except in the southernmost part of the area, where the radon concentrations are strongly affected by the superposition of the N–S and the NW–SE fault systems.
(c) Epicentral zones of instrumental and historical earthquakes correspond to the highest values of radon concentrations, probably indicating recent activated fault segments. In particular, high radon values occur in the zones struck by earthquakes in 1835, 1854, and 1870.
(d) Deep-seated gravitational deformation generally coincides with zones characterised by low radon concentrations.
In the studied area, the anisotropic distribution of radon concentrations is congruent with the presence of neotectonic features and deep-seated gravitational phenomena. The method used in this study could profitably contribute towards either seismic risk or deep-seated gravitational deformation analyses.  相似文献   
169.
The “Nares Strait problem” represents a debate about the existence and magnitude of left-lateral movements along the proposed Wegener Fault within this seaway. Study of Palaeogene Eurekan tectonics at its shorelines could shed light on the kinematics of this fault. Palaeogene (Late Paleocene to Early Eocene) sediments are exposed at the northeastern coast of Ellesmere Island in the Judge Daly Promontory. They are preserved as elongate SW–NE striking fault-bounded basins cutting folded Early Paleozoic strata. The structures of the Palaeogene exposures are characterized by broad open synclines cut and displaced by steeply dipping strike-slip faults. Their fold axes strike NE–SW at an acute angle to the border faults indicating left-lateral transpression. Weak deformation in the interior of the outliers contrasts with intense shearing and fracturing adjacent to border faults. The degree of deformation of the Palaeogene strata varies markedly between the northwestern and southeastern border faults with the first being more intense. Structural geometry, orientation of subordinate folds and faults, the kinematics of faults, and fault-slip data suggest a multiple stage structural evolution during the Palaeogene Eurekan deformation: (1) The fault pattern on Judge Daly Promontory is result of left-lateral strike-slip faulting starting in Mid to Late Paleocene times. The Palaeogene Judge Daly basin formed in transtensional segments by pull-apart mechanism. Transpression during progressive strike-slip shearing gave rise to open folding of the Palaeogene deposits. (2) The faults were reactivated during SE-directed thrust tectonics in Mid Eocene times (chron 21). A strike-slip component during thrusting on the reactivated faults depends on the steepness of the fault segments and on their obliquity to the regional stress axes.Strike-slip displacement was partitioned to a number of sub-parallel faults on-shore and off-shore. Hence, large-scale lateral movements in the sum of 80–100 km or more could have been accommodated by a set of faults, each with displacements in the order of 10–30 km. The Wegener Fault as discrete plate boundary in Nares Strait is replaced by a bundle of faults located mainly onshore on the Judge Daly Promontory.  相似文献   
170.
Anomalous crustal and upper mantle structure of northern Juan de Fuca plate is revealed from wide-angle seismic and gravity modelling. A 2-D velocity model is produced for refraction line II of the 1980 Vancouver Island Seismic Project (VISP80). The refraction data were recorded on three ocean bottom seismometers (OBSs) deployed at the ends and middle of a 110 km line oriented parallel to the North American continental margin. The velocity model is constructed via ray tracing and conforms to first-arrival amplitude observations and travel time picks of direct, converted and reflected phases. Between sub-sediment depths of 3 to 11 km, depths normally associated with the lower crust and upper oceanic mantle, the final model shows that compressional-wave velocities decrease significantly from southeast to northwest along the profile. At sub-sediment depths of 11 km at the northwestern end of the profile, P-wave velocities are as low as 7.2 km/s. A complementary 2-D gravity model using the geometry of the velocity model and velocity–density relationships characteristic of oceanic crust is produced. The high densities required to match the gravity field indicate the presence of peridotites containing 25–30% serpentine by volume, rather than excess gabbroic crust, within the deep low velocity zone. Anomalous travel time delays and unusual reflection characteristics observed from proximal seismic refraction and reflection experiments suggest a broader zone of partially serpentinized peridotites coincident with the trace of a pseudofault. We propose that partial serpentinization of the upper mantle is a consequence of slow spreading at the tip of a propagating rift.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号